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PREFACE

The Finite Analytic Method

This monograph contains the fundamental development of

the ne_; numerical method called the "Finite Analytic" method.

The finite analytic method differs from the finite difference

uethod and the finite element method. The basic idea of the

finite ancLlytic method is the incorporation of local analytic

solutions in the nuuerical solution of linear or nonlinear

partial _ifferential equations. In the finite analytic method,

the total problem is subdivided into a number of small

elements. The local analytic solution is obtained for the

slaall element in whicll the governing equation, if nonlinear,

is linearized. The local analytic solutions are then expressed

in algebraic form and are overlapped to cover the entire

region of the problem. The assembly of these local analytic

solutions, which still preserves the overall nonlinearity of

the governing equation, results in a system of linear

algebraic equations. The system of algebraic equations is then

solved to provide the numerical solutions of the total problem.

Unlike the finite difference method, the finite analytic

I_lethod does not tamper with thR differentials or the

derivatives of the governing equation, nor does the analytic

i_lethod need the sha[_e function which is made to satisfy the

integral form of the governing equation, as in the finite

elenent method. The finite analytic solution obtained from the

finite analytic method is differentiable. As a result, the

derivative of the solution obtained analytically is much more

reliabie. [n this r_onograpn the finite analytic solution is
s_own to be stable, even _hen the highest derivative term of

c_e _artial differential equation is uultil,lied by a small

factor, such as one over Reynolds number. It is also shown ti_t

she finite analytic solution for Navier-Stokes equations at

iligh I_eynolds numbers autonatic_ily provides a gradual shift

of the up_;inding effect. Therefore t_e finite analytic solution

accurately simulates the e_fect u[ convection and eliminates

the false numerical diffuslun that would occur in the upwin_ing
difference or unidirecuion difference used in the finite

difference or the finite element uethods. The conputaticnal

tir:c for the finite auayltic solution is shown to be abodt

equal to tilat of the kinJte difference nlethod. In certain cases,

due to the stauiiity of the syste,n of algebraic equations

derived in _:he finite analyitc _:_ethod, the overall co|,iputational

ti_e cut_ be even loss. 'ri,e finite analytic solution derived in
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the present analytic mehtod is in its most elementary form in

ter[_s of accuracy. But it has already been shovTn to De

_uf_icient for the drobler,_s unuer consideration. Further

_ccuraue finite analytic formulae can be Uerived and arc

inoica_ed in _he i._onogr-_,)i,,,- .| ,

The fir_iue anlytic uethoa was developed in early 1977,

w_len Dz'. Peter Livas %hen a graduate student t;orKing on his

docaoral dissertation wiuh me. He had been having uifficulty ill

oUtaining convergence of a system of finite difference

algebraic equations derived from the Navier-Stokes equations
for t_#o-dimensional turbulent flow with a second-order

turDulent uouel. I conceived the finite analytic method one

night and solved the sim[_le two-dimensional Laplace equation.

Li then carried the finine analytic method to the unsteady

diffusion equation and nonlinear ordinary differential

equations and couplted his Ph.D. dissertation in 1978.

In 1982, Dr. F uo-San Ho developed the finite analytic n}ethod

by solvlng uomentun and heat transfer proulems with coupiex

geometries. This bound volume contains the research results of

Dr. Uo aild uyself, extended further by [Ir. Wu-Sun Cheng to the

[_roblem of vortex shedding uehind an arbitrary obstacle.
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ABSTRACT

A numerical scheme, called the "Finite Analytic Method"

is used to solve the two-dimensional incompressible momentum

and energy equations. The basic idea of the finite anytic

(FA) solutions is the incorporation of local analytic solu-

tions in the numerical solutions of linear or nonlinear par-

tial differential equations. In the FA method, the flow

region is subdivided into a number of small rectangular ele-

ments, in which the governing equation is locally lineaLized

• Hence, by s_ecifin%] suitable boundary and initial condi-

tions for each element, the local analytic solution for an

element can be obtained. When the local analytic solution

is evaluated at a given nodal point, it resuIts in a system

of linear algebraic equations which are solved iterativel%'

to provide the numerical solution of the total problem for

the flow region.

In order to solve more practical engineerin[_ problems,

an FA method capable of solving flow and heat transfer pro-

blems invol%*i_] complex _]eometries is developed. In this

stL|dy, the boundary-fitted coordinate transformation is

incorp( ted into the FA mrthod.

The ._ method is employed to solve several flow and

heat transfer problems. The problem of "convective heat
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transfer in a cavity" is studied with the Reynolds nLLmber

ranging from i00 to 2,000 and the Peclet number ranging from

10 to 20,000 by using an equal size grid in the physical

plale. The "separation of channel flow" is examined at diff-

erent Reynolds numbers over the range 25 to 229 with both

equal and unequal size grids in the physical plane. For

problems with complex geometries, "flow past an airfoil" and

"convective heat transfer in tube bundles", both are solved

with the FA method for the boundary-fitted coordinate system

• The FA results are compared with the experimental data,

the theoretical calculation, and predictions by other numer-

ical schemes. In all these problems, the FA solutions con-

verge rapidly and are stable, and accurate.
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CHAPTER I

INTRODUCTION

In many practical engineering problems, the best

reliable information often comes from actual measurements

with appropriate instrvments. The on site measurement is not

a prediction since the equipment or the facility is already

built. Although a full scale model can be constructed before

expensive equipment is built, this approach is still

expensive and time consuming. Therefore, it is more

economical and convenient to simulate the problem in a

suitable scale which, in many engineering problems, is a

small scale. However, the reduced scale approach often has

difficulty in simulating the features of the full scale

equipment. For example, radiation, combustion and boiling

phenomena are difficult to simulate in a small scale.

Measurement in a model simulation sometimes has difficulty

also due to (I) smallness of the model, (2) instrumental

restriction, and (3) disturbance created by insertion of

instruments.

Due to difficulties in the experimental study the

theoretical approach, when the phenomena can be simulated by

a mathematical model, is an attractive alternative to an



i
2

experiment. For example, the Navier-Stokes equations are

known to simulate flows of a Newtonian fluid.

Unfortunately, there are only a handful of exact solutions

of the Navier-Stokes equations due to the existence of the

non-linearity and the coupling of many variables through the

continuity and momentum equations. For such partial

differential equations which cannot be solved analytically,

numerical methods are often employed. Many numerical methods

for solving partial differential equations bear the

following similarities. First, the computational region is

subdivided into a number of small elements and grid points,

so that the boundary and/or initial conditions are replaced

by the discretized values at a finite number of grid points

or elements. Secondly, an algebraic equation that

approximates the partial differential equation is derived

with proper approximation function for dependent variables

between nodal points in the local element. Finally, the

resulting system of algebraic equation is solved with given

boundary and/or initial conditions to obtain the numerical

solutions for all of the grid points.

Among the available numerical methods, two of the most

widely used methods are the finite difference (FD) and the

finite element (FE) methods. In the FD method either

forward, backward, or central difference formula is used to

replace derivatives in the governing equations. Of these
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three different formulae, the central difference formula has

a better accuracy and is preferred over the other two.

However, it cannot be used near the boundary as an extra

node has to be located outside the boundary of the flow. It

is also found that the use of the central difference formula

for the convective transport equation for high Reynolds

number flows may create numerical instability [i] in solving

the system of finite difference equations. This difficulty

is partly overcome by introducing the upwind scheme which

shifts the difference scheme toward the upstream. If the

upwind difference scheme is used improperly, it produces

large numerical errors which are normally termed as

numerical diffusion. Also the FD upwind scheme must be made

judiciously at a given Reynolds number.

Another numerical method widely used is the finite

element method. This method considers an approximation

function which is often a polynomial of low degree in a

small element of the flow which in general cannot satisfy

the governing equation exactly. Therefore, the

approximation functions are made to satisfy the governing

equation in an integral sense by either a weighted residue

method or a variational principle. The FE method also

results in algebraic equations which are then solved. This

method at present is more widely used in solid mechanics

problems but when applied to fluid mechanics problems some



difficulties surface. Problems of accuracy and stability

experienced by the FD method are also experienced by the FE

method, particularly when the flow at high Reynolds number

is considered.

In order to improve the FD and FE numerical methods,

the finite analytic (FA) method was conceived. The FA

method was first developed by Chen and Li [21 for the

Laplace and heat diffusion equations. Later Chen et al.

[3,4] extended the method to the Navier-Stokes equations.

Unlike the FD or the FE method, in the FA formulation the

algebraic equation which approximates the partial

differential equation in an element is obtained from the

analytic solution in each local element. Details of the

principle and procedures in obtaining the FA solution are

presented in Chapter II.

In earl_er development of the FA method, the local

analytic solutions for both steady and unsteady two-

dimensional Navier-Stokes equations in a small element were

obtained by Chen et al. [3,4] by locally iinearizing the

governing equation. They obtained the analytic solution for

an element by adopting a second-order polynomial to

approximate the boundary condition for all boundaries

surrounding the local element. When the local analytic

solution is evaluated at a given nodal point, a 9-point FA

algebraic equation is obtained. The FA solution exhibits a
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gradual and proper skew upwind shift of bounding nodal

influence on the interior nodal value. This FA skewed

upwind differs from the upwind scheme given by the FD and FE

methods [5,6] since the skew upwind shift is automatic and

analytic. The FA solution given by Chen et al. [7,8,9] was

shown to be stable and accurate. Recently, Chen and Chen

[10] in an attempt to improve the FA method employed linear

and exponential functions as the boundary function along the

boundaries of a local element. The reason for the

improvement is because the linear and exponential functions

specified along the boundary of an element also satisfy the

convective transport equation considered. The FA

coefficients obtained thus exhibit the correct asymptotic

behavior at high Reynolds numbers and Peclet numbers. In

addition, the computational time is also greatly reduced and

thus the FA method is considered a viable numerical too]

for solving practical engineering problems. However, as the

numerical methods and computer technology advance the

engineering probtems that demand numerical solutions also

become more complex. Therefore, in the present study the FA

method capable of solving flow and heat transfer problems

involving complex geometries is developed. In order to

achieve this goal, the boundary-fitted coordinate

transformation [II] is incorporated into the FA solution in

the present investigation. More discussion on the boundary-

fitted coordinate transformation is given in Chapter I_I.
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The main purpose of this study is thus to extend and to

apply the FA method to laminar two-dimensional flows and

heat transfer problems in complex geometries. The detailed

objectives are

I. to develop a computer program for grid generation

based on the boundary-fitted coordinate

transformation.

2. to transform the governing equation from the physical

plane into the transformed plane and then derive the

FA solution for the governing equation in the

transformed plane.

3. to obtain FA solutions for internal flows with equal

or unequal grid sizes in the physical plane.

4. to obtain FA solutions for external flows with

complex geometries.

In the present study, the Navier-Stokes e_ations in

the stream function-vorticity formulation are used. In such

a formulation the boundary vorticities are unknown and must

be solved as a part of the problem. The difficultie_ of

specifying vorticity boundaries in this formulation is

offsetting the assurance of the conservation of mass in the

numerical solution and elimination of the pressure variable.

Although some authors prefer to use the velocity-pressure

formulation in which the difficulties of the unknown

boundary vorticitles can be avoided, it requires the
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solution of the velocity and pressure variables

simultaneously and needs careful treatment in satisfying the

mass conservation [i].

In Chapter If, the principle of the FA method is

briefly outlined. Since the FA method is employed to solve

the given problem with complex geometry, in Chapter Ill the

idea of boundary-fitted coordinate system is presented and

the boundary-fitted transformation is obtained. Details of

the relations of the coordinates between the physical plane

and the transformed plane are given in Appendix A. Chapter

Ill also presents the generation of three boundary-fitted

coordinate systems to be used in later chapters.

In Chapter IV, the FA solution for unsteady two-

¢im_nsional convective transport equations in the

transformed plane is derived. Details of the derivation are

given in the Appendix B. A linerization scheme associated

with the higher order correction of convective terms is

outlined. The relation between the unsteady time marching

and the steady iterative procedure is also discussed.

The FA numerical solution of steady and unsteady two-

dimensional flow and heat transfer problems is given in the

ensuing chapters. The survey of the problem considered is

presented separately at the begining of each chapter.

In Chapter V, the problem of convective heat transfer

in a cavity is investigated. The temperature distribution

J
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and the heat transfer are studied with the Reynolds number

ranging from I00 to 2000 and the Peclet number ranging from

i0 to 20,C00 by using equal-size grids in the physical

plane.

In Chapter VI, the separation of channel flow is

examined at several different Reynolds numbers over the

range of 25 to 229. In this problem, the FA solutions are

evaluated with both equal and unequal grid sizes in the

physical plane. These FA results are compared with reported

experimental measurments and the numerical results by the FD

and FE methods, The computer program is appended in

Appendix C-2.

In chapter VII, flow passing a single airfoil is solved

with the FA method for the bounda y-fitted coordinate

systems. The FA solutions of these potential flow problems

are compared with the experimental data and the theoretical

calculations. Yhe computer program is appended in Appendix

C-3.

The most complex problem considered in the present

investigation is contained in Chapter VIII. The FA method

with the boundary-fitted coordinate system is employed to

solve the viscous flow through tube bundles and heat

transfer between a heated tube and the surrounding fluid.

The FA solutions for the streamline pattern, vorticity

distribution, temperature distribution and heat transfer of
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a tube are presented for different Reynolds numbers. For the

given configuration of the tube bundles, the critical

Reynolds number for the predominantly laminar flow is

predicted. The FA results using the boundary-fitted

coordinate system are compared with the experimental and

empirical results and also with the numerical predictions

obtained by the FD method with different grid systems. The

computer program is appended in Appendex C-5 and C-6.

The last chapter summarizes the key findings and

conclusions and suggests future studies.
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CHAPTER I I

PRINCIPLE OF THE FINITE ANALYTIC METHOD

The basic idea of the finite analytic (FA) method is

the incorporation of analytic solutions in the numerical

solutions of partial differential equations (PDE). The FA

method, unlike the finite difference (FD) and the finite

element (FE) method, is based on the composition of analytic

solutions obtained in the small elements which make up the

total problem.

To illustrate briefly the basic principles [2] of the

FA method an elliptic PDE, L(¢ )=g, is considered, where L

can be a linear or nonlinear partial differential operator

and g is the inhomogeneous term depending on the independent

variables, x, y and t. If the boundary and initial

conditions of the problem are properly specified, then the

PDE is well posed. In order to solve the problem with the FA

method, the whole domain of the problem is subdivided into a

number of elements where analytic solutions can be obtained.

A typical element of size 2h*2k in a time interval At=_-_-I

is shown in Fig. (I) where the center point, P(i,j), at a

k tk-igiven time t or is surrounded by eight neighboring

nodal points, EC(east center), WC(west center), SC(south
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center), NC(north center), NE(northeast), NW(northwest),

SE(southeast) and SW(southwest), which correspond to points

(i+l,j), (i-l,j), (i,j-l), (i,j+l), (i+l,j+l), (i-l,j+l),

(i+l,j-l) and (i-l,j-l) respectively in general indexing.

Once the whole domain is subdivided into small elements, an

analytic solution for the PDE Jn each element may be

obtained. In the case when the PDE is nonlinear, the

nonlinear equation may be locall_ linea_ized in the small

element. In this fashion the overall nonlinear effect can

still be approximately preserved by the assembly of local

analytic solutions which constitute the numerical solution

of the PDE over the whole domain. The problem is now reduced

into one with many finite elements where analytic solutions

can be obtained.

Let the lihear or linearized governing equation in an

element be L(_)=g. If in the small element the inhomogeneous

term q is considered to be a constant then a simple analytic

solution can be obtained at tk when proper boundary and

initial conditions are specified, or

# = f(fN' iS' fE' fw' h, k, x, y, t, g) (2-1)

where the iN, is, fE and fw are respectively the northern,

southern, eastern and western boundary conditions of the

element. The boundary conditions fN and fs of the element
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are functions of x and t whlle fE and fw are functions of y

and t. The boundary functions fN' fs' fE and fw for

numerical purpose may be approximately expressed in the

implicit formulation in terms of the nodal values along the

k
boundaries of the element at time t For example

k k k x)
fN = f(¢NE' CNC' _NW' (2-2)

where CNE ' CNC and cNW are the nodal values of ¢ at nodal

points NE, NC and NW at time tk. Boundary conditions for fs'

fE and fw can be similarly expressed. The initial condition

k-i With theat tk-I may be approximately taken to be Cp

boundary conditions in equation (2-2) and the initial

k-i equation (2-1) becomes
condition Cp ,

k k k k k k k

¢ = f(¢EC' CWC' _NC' ¢SC' _NE' CNW' ¢SW'

k k-i

¢SE' Cp , h, k, x, y, t, g)

Evaluating equation(2-3) at point P of time

element, one has the FA formula for the element as

(2-3)

zn the

k k C k k +
Cp = CECCEC + WC_WC + CNCCNC

C k k + + k-i
SW¢S W + CSE¢S E Cpgp Ci¢ P

(2-4)

Here the C's are known analytic coefficients representing

the weightage of the boundary and initial nodal values

k-I

etc., _p and the inhomogeneous term gpfOr the point P.
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In general, equation (2-4) may be derived for each

unknown nodal point (i,j) in the problem. For all interior

ith and jth points

k (i j) k#k(i,J ) = CEC(i'J')#EC + CWC ' #WC +

k-l(i j)
Cp(i,j)gp(i,j) + Ci(i,j)_ p ,

13

(2-5)

The system of algebraic equations, equation (2-5) thus is

generated for all elements. It can be solved with the given

boundary and initial conditions to provide the FA numerical

solution of the given problem.

This is the principle of the FA method. The FA method

can be applied to any partial differential equation such as

the Navier-Stokes equations for laminar or turbulent flows,

or the energy equation. In the present study the FA method

is employed to solve the two-dimensional laminar flows and

heat transfer problems for both simple and complex

geometries.
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CHAPTER III

BOUNDARY-FITTED

CURVILINEAR COORDINATE

SYSTEM

3.1 Introduction

It is imperative in the numerical solution of partial

differential equations that the boundary conditions be

represented accurately in the numerical formulation. This is

because the region in the immediate vicinity of solid

surfaces is generally dominant in determining the

characteristics of the fluid flow and energy exchange. The

vorticity, shear stress and heat flux in the vicinity of the

solid boundaries are directly dependent on the velocity and

temperature gradients that prevail in the region near the

surface. Accurate vorticity function, shear stress and heat

flux can be determined provided that the velocity and

temperature profiles are calculated accurately. The problem

is acentuated at higher Reynolds numbers where the gradients

of dependent variables become more severe. To overcome this

difficulty, in the present study the boundary-fitted

coordinate transformation is employed and incorporated into

the FA method to solve problems involving irregular

boundaries.
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3.2 The Basic Idea Of

Boundary-Fitted Coordinate

System

The boundary-fitted coordinate transformation is a

method in which automatic numerical generation of a general

curvilinear coordinate system can be made for a given

problem. The method described below was first developed and

applied to the fluid dynamic problem by Thompson et al.

[12]. The basic idea of boundary-fitted coordinate system is

most easily explained with an analogy to the cylindrical (or

polar) coordinate system. For problems involving two

concentric circular boundaries, the cylindrical coordinate

system is the obvious choice. The reason for this choice is

because a coordinate line, i.e., a line of constant radius,

r, coincides with each boundary. Thus, the cylindrical

coordinate system is fitted to the circular boundaries. The

boundary-fitted system accomplishes precisely this feature

regarless of the boundary shape some particular

coordinate lines are made to coincide with the arbitrarily

shaped boundaries.

In Fig. (2), the curvilinear coordinate, _ , is defined

to be constant on the inner boundary in the same way that

the curvilinear coordinate, r, is defined to be constant on

the inner circle in the curvilinear coordinate system.

Similarly, q is defined to be another constant of different

value on the outer boundary. The other curvilin_ar
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coordinate, _ , is defined to vary monotonically over the

same range on both inner and outer boundaries, as the

curvilinear coordinate,@ , varies from 0 to 2_around both

inner and outer circles in cylindrical coordinates. It is

noted that the actual values of coordinates, _ and _ , are

irrelevant, just in the same way as r and 8 may be expressed

in different units in cylindrical coordinates. The question

now is how to generate the boundary-fitted coordinate

system.

Consider the general transformation from the physical

plane (x,y) to the transformed plane (_ ,rl) as shown in Fig.

(2). It is required that Flmap ontoF 1 F2ma p ontoF2 , F3ma p

onto F3 and F 4 map onto F 4. For identification purposes

region D is referred as the physical plane, D as the

transformed plane and F 1 as the body-shaped contour. It is

noted that the transformed boundaries (F 1 and _ ) are made

of constant coordinate lines (q-line) in the transformed

plane. The contours __ F4which connect the contours F and F1 2

are coincident in the physical plane and thus constitute re-

entrant boundaries in the transformed plane. When the

values of the coordinates _ and "I are chosen on all the

boundaries of a closed field, the remaining work is to

defina the values in the interior of the transformed field

in terms of these boundary values. To achieve this

transformation, the elliptic partial differential equations
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since the

and '] from the elliptical PDE are completely defined in

the interior of the region by its values on the boundaries

of the region. In addition, an obvious condition is to

require that the same pair of values (£,,_) must not occur at

more than one point in the field, otherwise the coordinate

system is ambiguous. This condition can be met by choosing

the elliptical PDE exhibiting extremum principles which

require the occurence of extrema for _ and q on the

boundaries of the field.

An appropriate choice of the ellipt!cal FDE for

boundary-fitted coordinate system may be a Pe]sson equ_tlon.

This can be illustrated with an example of oI_e-dimens_onal

Poisson problem for i . Consider a region O_x-] havinq values

at two ends £ =0 and I respectively as shown in Fig. (3a).

The function i in the interior of the reglon O_x_l is

described by the Poisson equation

xx ' ( I)

with the boundary conditions at two ends

c = 0 at x _ 0 ,

(_-.,)
: = [ at x :_ 1

The source (Inhomogeneous) term, P, in equation (3-I) can be

a functiol_ of dependent variables, but for slmpllclty _t Is
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assumed to be constant here. Thus, the analytic solution of

equation (3-I) is obtained as

_: -_-(x2-x) + x . (3-3)

Equation (3-3) illustrates how a location in x-domain is

transformed into _-domain. In order to show the effect of

the source term (P) in the Poisson equation (3-1), three

special cases, P=O, P=2>O and P=-2<O are considered. For the

case P=0, equation (3-3) gives a linear relation between

and x. Thus, an equally spaced x interval maps into an

equally spaced boundary-fitted coordinate. In other words,

the corresponding _-lines are evenly distributed between two

ends O<x<l as shown in Fig. (3-b). For the case p=2>O, the

analytic solution in equation (3-3) is nonlinear relation,

_=x 2, which causes the slope d_/dx near x=l to steepen as

shown in Fig. (3c). This implies that the equally spaced

-lines represent unequally spaced interval of x in the

physical domain with the x-lines more clusterd toward the

boundary, x=l. On the other hand, for the case P=-2<O, the

analytic solution in equation (3-3) becoraes _=2x-x 2 which

causes the evenly spaced _-lines to represent more dense x-

lines at the other end x=O as shown i_ Fig. (3d). It is seen

that in the ca_e of p=-2 the function _=_(x) gives a one to

one correspondence. If the source term P has a value larger
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than 2 or is a polynomial of sufficiently high degree in

the range OSx_l, it is possible that the function _=_(x) has

an 'S' shaped profile as shown in Fig. (3e). In this

situation a constant _ may correspond to multiple locations

of x. Consequently, the one to one correspondence between

and x is invalidated. However, if a propery source function

P is applied over the range O_x_l, the multi-valued relation

between _ and x does not occur as shown in Fig. (3f). Thus,

the Poisson equation can be used as a vehicle for

transforming the physical coordinate x into the transformed

coordinate _ with the great advantage of contracting more

dense grid line of x at a desired location with evenly space

lines. This concept c_n be readily extended to two-

dimensional and three-dimensional cases.

3.3 Boundary-Fitted Coordinate

System For Two-Dimensional

Problem

In view of the example given above, the Poisson

equation may be considered as the coordinate generating

equation. Therefore, let _(x,y) and n(x,y) be the coordinate

system on the transformed plane as shown in Fig. (2). They

are governed by

_xx + _yy = P(_,n) , (3-4a)

nxx + _yy = _(_,_).. , (3-4b)

with the boundary conditions
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n = n I on Fl(X, ¥) ,

q = q2 on F2(x,v) ,

q = q3(x,y) on F3(x,y) ,

q = q4(x,y) on F4(x,y) ,

(3-5b)

and

= _l(X,y) on Pl(X,V)

= _2(x,y) on F2(x,y) ,

= _3 on F3(x,v) ,

= _4 on F4(x,y) ,

(3-5a)

where the control functions P and Q in equation(3-%) may be

chosen to cause the coordinate lines to concentrate as

desired, in analogy with the coordinate lines shown in the

one-dimensional example in Section III-2. As discussed in

Section III-2, negative values of P causes _-lines to move

toward the _-line having the lowest value of _, while

positive values have the opposite effect. Similarly, the

function Q may be used to shift the ,]-lines to be more dense

toward one of the boundary lines according to the value of

Q. In this study the following functions suggested by

Thompson et al. {II, 12] are used:

" -dI - il
D(_.) = - Z asgn(__[i ) e

i=l
, (3-6a)

i
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n I I

Q(q) = - Z a sgn(q-q i) e-dlq-qil , (3-6b)
i=l

where sgn(x) is simply the sign of x. In equation (3-6), 'a'

and 'd' are attraction amplitude and decaying constants,

while _i is a specified _-line. For a given term in equation

(3-6a) the function P reaches the local maximum magnitude on

the _. -line and decays exponentially from that line on
1

either side at a rate controlled by 'd' With the

incorporation of the sign-changing f_:nction and the

summation function in equation (3--6), not only the G-lines

are dense on both sides of the _ i-line• but also that

concentration near more than one line is possible.

Furthermore, equation (3-6) has additional flexibility by

varying the attraction amplitude ar.d Lh_ decaying constants,

'a' and 'd' from one line to another. Control of q-lines

is achieved by a similar form of the function Q provided in

equation (3-6b). Next, consider the Dirichlet boundary

conditions of equation (3-4). On the physical plane ql andrh

given in equation (3-5b) are different constants (q2 > ql) ,

and _l(x,y) and _2(x,y) given in equation (3-5a) are

specified monotonic functions on T1 and T2 , respectively.

Furthermore, one can specify arbitrarily a branch cut to

join ['land T2 in the physical plane. Here the coincident

coordinate lines _3 and _4 form a branch cut, which becomes
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re-entrant boundaries _ and _ on the left and right sides

of the transformed plane (see Fig. (2)). All functions and

their derivatives are continuous across _ to _ so that D3

(x,y) and _4(x,y) in equation (3-5b) are exactly the same(nl

<n3=q4<n2 ). Therefore, boundary conditions are neither

required nor allowed on F3 and }'4" The values of _ onF 3 _ F4

are, of course, analogous to the coincident 8=0 and 2_ lines

in the cylindrical coordinate system and are set h(_)=n(_).

Since it is desired to perform numerical calculation in

uniform square grids in the transformed plane (_,D), it is

necessary to rewrite equation (3-4) into the form of x(_,_)

and Y(_,n ), that is to interchange the dependent and

independent variables in equation (3-4) by the relations and

Jocobian given in equation (A-8) of Appendix A. The coupled

system of equation (3-4) written with (_,_) as independent

variables is _s follows :

where

2 2
+ y ,e = x

B = x_x + Y_YR '

2 2

y = x_ + Yr_ '

J = x_y n- XnY _ ,

with the transformeu boundary conditions

(3-8)

• _ Ld
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x = fl (_''TII) on I"1 ,

x = gl(_,_12) on F 2 ,

x = hl(_.,,l ) on F 3 and I'4
w

y = f2(;;,t_l) on I"l ,

y = q2(_,,12) on I' 2 ,

(3-9a)

(3-9b)

y = h2(_.,Tl) on I'3 and I"4 .

The functions f l' _ ' gl and g2 are specified by the known

shape of the contours VI, F2 and the specified distribution

of ;_ . As noted, the points outside the right side boundary

in the transformed plane (Fig. (2)) are the same as

corresponding points on the same rl-line inside the left side

boundary I'3 and vice versa. Therefore, boundary values, h
1

and h 2 in equation (3-9) are not specified along the re-

entrant boundaries I'3 and ['4 in the transformed plane.

The elliptical governing equation (3-7) is now well

posed so that the boundary-fltted coordinate system can be

generated by solving the elliptic boundary value problem

with the values of the tramsformed coordinate being

specified along the contours in the physical plane.

3.4 Numerical Solution And Examples

In obtaining the solution of equation (3-7) , all

derivatives are approximated by the second-order central

difference expressions. The resulting difference equations

are coded in a computer program listed in Appendlx C. The

set of nonlinear simultaneous difference equations is then

solved by the line-by-line Impliclt Iteratlve method.
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In particular, it should be noted that the actual

values of the transformed coordiAates, _ and n, are

irrelevant to the subsequent use of the coordinate system in

the numerical solution of partial differential equations.

For the grid size in the transformed plane, A_ and _ simply

cancel out of all difference expressions for transformed

derivatives. Therefore, A_ and _ are both taken as unity

for convenience, with _ and n each ranging from unity to the

total number of coordinate lines.

In the present study, equation (3-7) is solved

numerically and applied to several geometries with single

and multi-body regions. The transformations selected for

presentation here are chosen to verify the generality of the

method as well as to introduce the boundary-fitted

coordinate systems for numerical analysis of fluid flows and

heat transfer problems to be discussed in Chapter VII and

Vlll.

As the first example, the configuration of infinite

rows of tubes shown in Fig. (4) is considered for the

boundary-fitted coordinates. Considering symmetry and

periodicity of the flow field, the transformation is made

only for one quadrant. The plots in Fig. (5) show the

uniformly spaced _=constant an_ _=constant lines with

various contracting functions P and Q in the physical plane.

The coordinate system given in Fig. (5a) is the case of zero
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contraction in which P and Q of equation (3-7) are set equal

to zero. For the contracted forms shown in Fig. (5), the

choice of the decaying factor 'd' is found to be more

sensitive than that of the attraction amplitude 'a'. For

example, setting a=20 and d=0.2, an over-contracted form

with rather strong wlde-spread effect is obtained as shown

in Fig. (5b), Next, using a=20 and d=0.75, a better

contracted form is obtained as shown in Fig. (5c). The

coordinate system shown in Fig. (5c) is employed for the

numerical calculation in Chapter VIII. Because it creates

more Uense grids near the tube in the physical domain, in

this transformation 22 ,<-lines and 21 q-lines are used and

the contraction toward both solid boundaries of tubes is

demonstrated.

As a second example, the boundary-fitted coordinates

arround a single airfoil is considered. Figures (6a,6b)

show two typical airfoils, NACA-O018 and Karmann-Trefftz

airfoils. Their coordinate data defining the body contours

are given in Figs. (6c,6d). The outer boundary for the

coordlnate transformation is taken to be a circle having a

diameter of three to four body lengths. The number of

coordinate lines used and the factors of control functlons

are 80 _-lines, 25 ._-lines and a=200, d=0.5 for NACA-0018

airfoil and 68 _.-lin_s, 25 ,l-l_nes and a=200, d=0.3 for

Karmann-Trefftz airfoil. The desired effect of the
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contracted transformation is demonstrated for both airfoils

in Figs. (7,8). These figures exhibit the effect of

contraction of the equi-spaced r1-!ines to the airfoil. It

should also be noted that grid spacing is significantly

clustered near both leading odqe and trailing edge of

airfoils in the contracted transformation. As is discussed

in Chapter VII, the contracted mesh spacing near solid body

boundaries of airfoils may help to minimize the numerical

error caused from the severe geometric change.

In this study the convergent solution of the

transformation in equation (3-7) is obtained if the maximum

differnce of all values of (x,y) in the computatzonal field

between two successive iterations is of accuracy 10 -6 . The

convergent solutions for the above examples can be obtained

within 250 iterations which requires about five to eight

minutes of CPU time on PRIME 750 to generate the boundary-

fitted coordinate.
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CHAPTER IV

FINITE ANALYTIC NUMERICAL SOLUTION

In this chapter, the FA solutions of the unsteady two-

dimensional Navier-Stokes equations cast in the stream

function-vorticity formulation and the energy equation are

derived. If the flow and heat transfer problems involve

complex geometry, the boundary-fitted coordinate system

described in Chapter Ill is employed to cast the governing

equations and the physical geometry into the transformed

coordinates before the problem is solved. The boundary-

fitted coordinates cooresponding to each problem are

obtained numerically by solving the partial differential

equation (3-7) outlined in Chapter III. In this chapter only

the FA solutions for the governing equations are presented

while the details of boundary and initial conditions for

each problem solved are given separately in the Chapters V,

VI, VII and VIII.

It is assumed that the fluid is Newtonian and

incompressible with constant transport properties. The two-

dimensional Navier-Stokes equations cast in the stream
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funtion-vorticity formulation and energy equation are given

below.

Vorticit7 Transport Equation :

+ (re) ]- _ - _ = 0 , (4-1)Re _t + (Ue)x y xx yy

where the vorticity, _ is defined by

2 (4-2)- =-V _ ,
= V x Uy

and velocity components

U=¢y , V ----- -- _X "

(4-3)

Here space and time variables x, y, t, are dimensionless and

normalized by a reference length H and a reference time H/U.

The velocity u and v are normalized by the reference

velocity U. Re=UH/_ is the Reynolds numbers.

Energy Equation :

+ (v0) ]- 0xx - 0 = 0Pe[O t + (u0) x y YY
(4-4)

In equation (4-%) temperature 0 is normalized as (T-_)/(T O

-Tw) where TO and Tw (Tw%T 0) are the constant inlet or free

stream temperature of fluid and the isothermal wall

temperature. The Peclet number, Pc, is Pr*Re where Pr is the



ORIGINAL P._,GE IS

OF POOR QUALITY 29

Prandtl number. The frictional heating (Eckert number) due

to the viscosity dissipation is assumed small in this

present study.

In order that a problem with complex geometry be solved

on the boundary-fitted coordinate system, equations (4-1),

(4-2) and (4-4) must be transformed into the boundary-fitted

coordinates. Utilizing the relations given in Appendix A,

the governing equations (4-1) through (4-%) become

j2Re .J Re _ ) _,_
_ + _'_l " + ( J Re _,_. o ) _I

-21_ (4-5)i

2
2i_ J

_!_ _, + __- _, + _:r+ _I_ _, 'I ..... @ _ ,(4-6)

j2Re 0 + (J_Re _!_) 0. + ( J Re
-[_-- t _ _',_- c_ _. c,

_'r- -_--) L_

- 0_. - _i_ 0 = --26- 0 , (4-7)

where g., _,, Re and Pe are stream function, vorticity,

Reynolds number and Peclet number, respectively, as deflned

before. _, _%, _ , J, _ and _ are functions related to the

boundary-fitted coordinates transformation, namely,

2 2

: = XrX. + YrY_

2 2
"_ = X: + y=

(4-8a)

(4-8b)

(4-8c)

J = xry,- xnY: ' ,
(4-8d)
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(4-9a)

(4-9b)

= - _ X rtD x _x_ 2_X_r _ + , (4-10a)

= + . (4-10b)
Dy _x_ - 28x_ yxnn

Examining equation (4-10) and equation (3-7) , it is noted

that Dx, Dy and the parameters J and T vanish if non-

contracting control functions (i.e. P=Q=O) in equation (4-4)

are employed. Also it is noted that the coefficients of

transformation (_, 5, _ , J, 0 and r) at each point of the

computational domain can be calculated when the boundaries

of the physical plane and the control functions P and Q are

defined. Thus these coefficients at each node can be

tabulated and stored for later use in the solutions of

equations (4-5), (4-6) and (4-7).

4.2 Initial And Boundary Conditions

In order to make the problem well posed, the initial

and boundary conditions associated with the particular

example are given in Chapters V, VI, VII and VIII. In this

section only provide a general discussion about the

coordinates needed to be specified for an arbitrary body

shepe as shown in Flg. (2). In Fig. (2a), the computational
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region, D, is bounded by the body contour _ and the outer

boundary _ The boundary and initial conditions for the

governing equations (4-1), (4-2) and (4-4) in the physical

plane are given below.

Boundary Conditions:

For Ix,y] rl(bOdy contour),

e (x,y,t) = eO (x,y,t) ,

_,(x,y, t) = constant ,

8 (x,y,t) = e0 (x,y,t) ,

= o
3n(F 1)

For Ix,y] F2 (remote boundary),

(4-11a)

(4-Iib)

(4-iic)

(4-11d)

u_(x,y,t) = _ (x,y,t) ,

(x,y, t) = _ (x,y, t) ,

_)(x,y,t) = 0 (x,y,t) •

(4-12a)

(4-125)

(4-12c)

Initial Conditions:

For [x,y] D (computational domain)

_(x,y,0) = 0 ,

_(x,y,0) = 0 •

(4-12d)

(4-12e)
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Here _(FI) of equation (4-11a) is the unit vector normal to

the contour F 1 at all points and $_ and 0c_ are prescribed

boundary functions. The boundary condition in equation

(4-11d) specifies the no slip condition on the body, while

that in equation (4-11b) stipulates the impermeable

condition on the body. The vorticity boundary condition on

the body contour F 1 in equation (4-11a), _0(x,y,t), is

needed in solving the vorticity equation (4-1), but it

indeed is unknown and has to be calculated as a part of the

solution of equations (4-1) and (4-2). Therefore,_ /_n of

equation (4-11d) is used instead of _0" Further detail of

this replacement is discussed later. The initial conditions

for _ and e are specified in equations (4-12a,b). The

initial condition for stream function is not necessary since

there is no time derivative term in equation (4-6) and

(4-2). The fact that vorticity _ is initially set equal to

zero implies that the flow initially is impulsively started

as the flow is irrotational. In this study the initial

temperature is considered to be uniform.

Boundary and initial calculations given in equations

(4-11) and (4-12) written in (x,y,t) coordinate system may

be expressed in the boundary-fitted coordinate system (_,n,

*

t). It is recalled that the boundary F 1 is transformed toq,
* * * *

F2 to F2, F3 to F3, F4 to F4 and D to D , and that the right

and left boundaries of the transformed plane (shown in Fig.
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(2b)), 73 and F 4, are coincident in the physical plane

Then the boundary and initial conditions for the equation

(4-5), (4-6") and (4-7) in the transformed plane are given

below.

33

Boundary Conditions:

For [6, q ] F 2

e(_,nl,t) = _0(_,ql,t) ,

$(_,_l,t) = constant ,

S(_,nl,t) = 80(_,_l,t) ,

3_(_ ,nl,t)
= 0

3n (n I)

For [5, _] F2

(4-13a)

(4-13b)

(4-13c)

(4-13d)

e(_,_2,t) = ,_ (_,_2,t)

_({,_2,t) = ¢_(_,_2,t)

8(_,n2,t) = 8 (_,_2,t)

(4-14a)

(4-145)

(4-14c)

Initial Conditions:

For [_,nl D

:,'(_,_,0) = 0

_',(_,_,0) = 0
J

(4-14d)

(4-14e)
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where _i and _2are the values of the T]-coordinate for
* * *

contours F1 and F2, and D is the computational region in

the transformed plane as shown in Fig. (2b).

4.3 Finite Analytic Solutions

In the following, the FA solutions of governing

equations (4-5), (4-6) and (4-7) are obtained in each

element and the corresponding FA algebraic equations are

formed. The system of these FA algebraic equations is

eventually solved numerically to provide the approximate

solution of the problem.

34

4.3.1 Vorticity Function

At first, the Navier-Stokes equations (4-5) and (4-6)

in the stream function--vorticity formulation in (_,_] ,t)

plane are considered. Since equation (4-5) is a nonlinear

equation, the general analytic solution of the equations

(4-5) and (4-6) is not available. Thus the FA numerical

method is used to obtain an approximate solution. To

impliment t_? FA method, first locally linearize the

vorticity transport equation (4-5) in the element as shown

in Fig. (i).

Let

.... _T - ,
',_ , ,! , _: = _'_ + _< (4-15)
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C = _

(4-i6a)

(4-16b)

(4-16c)

where _-D and _ are constants representing the average

convective velocity in the element. They may be taken as the

integral average of _n and $_ in the element

;  ndA I  £dA
_'q = , _'76 = , ( 4 - 17 )

f dA IdA

or simply the convective value at the interior node, P,

i given in Fig. (I). The _, and _' are then respectively the
'I %

deviation of the convective velocities _ and _ from those

| of _n and in the element. In general _'_ and _ are small

if the element is reasonably small. Substituting equation
p.

(4-16) into equation (4-5) and assuming that _, _ ,T , o ,_and

J take the values at the node P, the vorticity transport

equation (4-5} becomes

- _. - C_ = g , (4-18a)2A_ + 2BC_ <,,_r r],1

g

-J Re

( ]- _ j2Re_t .n _r'!_'))_, + (_) _ _ _ _ (4-18b)
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The function g in equation (4-18b) consists of three terms

namely, unsteady, cross derivative, and higher order

correction terms. In order to simplify the derivation of

the analytic solution of equation (4-18a), the finite

difference approximation is employed to approximate the

unsteady term, _ t' and cross derivative term, _n and the

higher order correction term. These terms when expressed in

the finite difference are no longer function of x, y and t

variables. Therefore, their variation from one element to

another can be approximated by a representative constant

value in the local element. From the description given

above, the term g is considered as a constant in the local

element. Thus equation (4-18) becomes a linear partial

differential equation with constant coefficients. Hence the

FA solution for (_-18) can be obtained analytically.

Because of the ellipticity of e_lation (4-18a) in

space, it can be solved uniquely if the boundary conditions

eN (x), _s(X) s WE(y ) and mw(y ) are specified. Various functions

can be used to approximate the boundary conditions where

three nodal values are available for each boundary (see Fig.

(I)). In this investigation, two different approximate

functions are considered. One is a second order polynomial

employed by Chen et al. [4] in solvin_ the heat transfer

problem of the cavity flow. This work is presented in

Chapter V. The other boundary approximation used is the
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combination of a linear and exponential function proposed by

Chen and Chen [i0] which is also employed in the present

investigation of flow and heat transfer problems in Chapter

VI, VII, and VIII. This choice of a linear and exponential

function is because it satisfies the governing equation

(4-18). As an example of a linear and exponential boundary

function, the western boundary condition of the vorticity

transport equation (4-18) in the transformed domain may be

approximated by

aw(_l) = a0 + aft ] + a2(e 2B'I - I) (4-19)

where the constants a 0, a I and _ can be determined by the

three nodal values of vorticity on the western boundary,

namely

a0 = _WC '

k[ ,lal = "NW "_SW coth Bk ("_tlW + _'_SW 2'_IWC '

a 2 =

_NW + _SU -2<°WC

4 s inh 2 Bk

(4-20)

The boundary conditions for north, south, and east

sides (i.e., _AIN (t,), _,_S(_) and ,,_E(,_)) can be similarly

approximated by the combination of a linear and exponential

functions. It should be remarked that one may transfer all

compl_x and non-uniform grid spacing in physical plane
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(x,y,t) into a rectangular uniform grid spacing in boundary-

fitted coordinates. Thus on the boundary--fitted coordinate

one may make all the numerical computation in the equal grid

size (i.e. h=k=A_=AD=I).

The linearized vorticity transport equation (4-18) in

the transformed plane (_,_,t) with its boundary conditions

_E(_), _(_), _S(_) and _N(_) can now be solved analytically

by the method of separation of variables to give the

analytic solution of equation (4-18) in an element. Details

of derivation of the FA solution are summarized in Appendix

B. When the analytic solution is evaluated at the interior

node P(i,j) of the element as outlined in chapter II, it

gives the FA 9-point algebraic equation (see Appendix B) as

8

n=l n

%_ + q_ %_ + cs__ + c_ _sE+ % % , (4-n)

where the coefficients %C' CNC' ----, etc. are derived from

t_e analytic solution. The FA coefficients are given below.

CEC = EBexp(-Ah) ,

c_ic = EA exp (-_k) ,

CSC : _ exp(Bk) ,

(4-22)



C_
Ah

2(A2 + B2C)

ORIGINAL PAGE _

OF POOR QUALITY

<%_* Cwc* %w- c_- %c-%)

+ Bk

2 (A2 + B2C)
¢c=,cs_.e_ -q= - c_ - %c)

E

4 ccmh Ah cosh Bk
- Ah coth Ah E2 -Bk ooth Bk E_ ,

EA = 2 Ah oosh Ah ooth Ah E2 ,

EB = 2 Bk coshBk coth Bk E_ ,

m=l

- (-i)m lmh

_A_;)2+ (_mh)2]2 co_ Umh

(2m-l),,
Im- 2h -- " " !

(4-23)
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(4-24)

(4-25)

(4-26)

I ,2__ (_n-l)_2k ' _'m= A2 + D2c + \m C .

A relationship between E
!

2 and E2 can be found to be

_ B(_ tanh Ah -Ah tanh Ilk
Ch2 E2 k2E½ = ---4AB cos|_ Ah oesh Bk (4-27)

The eval_.ation of inhomogeneous term gp, which contains the

unsteady term _o cross derivative term _ and the high
t' r_

order correction term, is approximated as follows :

(,.t)r ¢,,__ k-Z) l= "_ -'_t- ' (4-28)

J Re 2;_
Gp = _ (_;_) + (_';_').-+ _ _'" • (4-29)
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Substituting equation (4-28) and C4-29) for g in equation

(4-21), one has the equation for vorticity at the kth time

step in terms of time step k-I as

_ = j2 Cn + _ eat _ '
1 +CP Re 1 n

_At

(4-30)

where n denotes the neighboring boundary nodes, EC, WC, NC,

SC, NE, SE, NW, and SW.

Examining equations (4-23) and (4-24) through (4-27),

one finds that only one series summation is needed to

calculate eight FA coefficients for each element. For

!

example, if E 2 (or E 2) ls calculated from equation (4-25),
!

ther E 2 (or E2) is obtained from equation (4-27). It

follows that EA, EB of equation (4-24) and all FA

coefficients are calculated. The choice of calculating

!

either E2 or E 2 in equation (4-25) can be best made based on

the value of the coefficient C in equation (4-18). It is

!

found that E 2 series converges faster when c>Ibecause cosh :_%
I

in the denominator of E 2 is larger than that of E 2. On
!

the other hand, when c<l, E 2 is tabulated and E 2 is obtained

through equation (4-27). Hence the number of terms needed in

|

calculating E 2 or E 2 for the FA coefficients In equation

(&-25) can be reduced according to the value of C. For

example, for C=9, one generally needs only 6 term summation



ORIGINAL PACi ;_ 41
OF POOR QUALITY

i -5
to achieve an accuracy for _ to within I0 and for C=4, 9

term summation is needed _o achieve the same accuracy.

The FA coefficients, CNC, CNa, ---- etc., in general,

are functions of local cell Reynolds number, 2Ah and 2BCk

and C which are differnt from one element to another. A

typical FA solution of equation (4-18) written in equation

(4-21) with g=O, C=I and h=k is schematlcally illustrated in

equation (4-31) for a skewed convective vector

= (lAb: 2) *m '
p n (4-]la)

0.0430 0.1850

0.2260 P

0.0541 0.22t,0

(2BCk = 2)

0. [)362

O. i[_50

0.04 30

-6 -8 -9
10 10 10

wl, = (2Ah= I00) O. 07_5[, ITM 10 -8 * (4-3ib)

- t_
O. H4ti88 O.07'i'_i_ I0

t2 BC k I 0 o )

In equation (4-31a) the values In the block are the FA

coefficients of the cori'esI_on:llng n,,de to be multiplied by

the nodal value "n ' The summation o£ these products provides

the FA solution of "I' for the element glverl ill equation

(4-21). The FA coefflc_ents can be interpreted as the
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percentage influence of the boundary node u on the interiorn

node Up under the given convective vector with components of

2Ah and 2BCk. Equation (4-31a) shows that the convection

comes from the southeast corner with cell Reynolds number of

2Ah=2BCk=2. The cell Reynolds number is quite small that the

effect of the diffusion between the center node P and the

surrounding points is felt at all neighboring nodes. IE can

be seen that all four middle coefficients on the bounlaries,

CNC' CWC' CS C' and CEC, have the same order of magnitude. It

is noted that the influence of the nodal value at the

upstream side of the convection is slightly larger than that

at the downstream side (i.e., Cwc>CEc, Csc>CNc , Csw>CNE ).

However, the FA coefficient for the SW node, CSW, is still

smaller than the CWC and CSC since the SW node is further

away from the center node, P. Therefore, C SW has a smaller

or
effect of diffusion on the node P than the node CSC %C

On the other hand, equation (4-31b) gives the FA

solution of larger cell Reynolds number (2Ah=2Bck=lO0) with

the convection vector approaching the element from the

southwest corner. Since a large cell Reynolds number implies

that the flow involves small diff'_sion, the FA analytic

solution predicts that the influence of the southwest

boundary node, _SW' on the interior Up is the strongest

while the downstream node, NE, has practically zero

-9
influence at i0
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The virtue of the FA solution derived here is that it

does not tamper with the derivatives of the governing

equation (4=18) and it is valid for all range of the

Reynolds number without the need of upwind schemes. Further

discussion of the FA coefficients for different cell

Reynolds numbers with different direction of convective

vectors can be found in Ref. [13].

4.3.2 Stream Function

The stream function in an element can be similarly

solved from equation (4-6). When the FA solution for

vorticity is known from equation (4-21), the FA solution of

the stream function in an element of 2h*2k can be easily

obtained. We note that the equation for the stream function

in equation (4-6) is a special case of vorticity equation

(4-5). In other words, equation (4-6) can be cast into the

same form of equation (4-18) by ceplacing e by _ and letting

A = -_ B = -c---- -- , (4-32a)
2_ ' 27

and

-2_ j2
(4-32b)
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Equation (4-6) unlike equation (4-5) _oes not have

convective terms. However the terms, A and B, shown in

equation (4-32a) which contains functional relation between

(x,y,t) and (_,n,t) coordinates varies from an element to

the other element on the transformed plane (_,q,t). The

function g in equatlon (4-32b) for stream function equation

(4-18) consists of the cross derivative term _q and the

source term _J only. The finlte anlytic algebraic

representation of the stream function _ at the node, P, in
P

an element is thus

8

,pp = [ C'n _n + _ gP
n=l

(4-33)

Here C A and _ are the FA coefficients given in equation

(4-22) and equation (4-23) with the values of A and B and

the function g is replaced by those given in equation
P

(4-32).

Some special problems, for example, the cavity flow and

the channel flow shown in Chapter V and VI, are desired to

perform the numerical calculation directly on the physical

plane (x,y,t) with uniform rectangular grid (Ax=h_.y=k). The

coefficients of transformation in equations (_-8) through

(4-10) can be simply set as

,=_=J=l

_-,= ,j= - =D_ = D = 0
X y

(4-44)
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In this case, the convective terms in equation (%-6) vanish

due to A=B=O in equation (4-32a). Thus the FA coefficients

in the physical plane are simply invariant and are given

below :

' = 0.205315ck = q_:= % =csc
= ' = C' = 0.044685%:% csE sw

l
% : o.2946ss

I

• (4-34)

4.3.3 Temperature Function

The energy equation given in equation (4-7) has an

identical form as that in the vorticity transport equation

(4-5) if _ is identified with _ and the Peclet number, Pe,

is identified with the Reynolds number, Re. Therefore, the

FA solution of equation (4-7) in an element is similar to

that of equation (4-18), if we set

A : 0.5 ( J Pe - T ) ,
a _'._- -_--

-J Pe - _ (4-35)

B = 0.5 ( a _, _ ) "

As a result, the FA solution of the temperture at the center

node, _ , can be expressed in the FA equation relating to
P

0n @E _ ) as in equationits surrounding (i.e., C' SE '

(4-21' which is
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(4-36)

Here C n and Cp are identical to equations (4-21) and (4-22)

except that A and B are given in equation (4-35) and _is

same as in equation (4-18) except that _ is replaced by8

4.4 Computational Procedure

As mentioned earlier, if the flow and the heat transfer

problem involve complex geome%ries, the boundary-fitted

coordinate system mentioned in Chapter III must be generated

before solving the governing equations. The calculation of

the boundary-fitted coordinate system from the physical

plane (x,y) to the transformed plane (_,n), the line-by-line

implicit iterative method is employed to solve the

difference approximation of equation (3-7) subject to

boundary conditions of equation (3-9) as described in

Chapter Ill. The results of transfomed coefficients _, 8, 7,

J, _ and _ calculated in equation (4-9) are stored and

ultilized for solving the governing equations (4-5) through

(4-7) in the transformed plane. In the present study,

because the fluid is assumed to be incompressible and has

constant viscosity _ , the stream function (_) and vorticity

(_) equations (4-5) and (4-6) are uncoupled from the

temperature (8) equation (4-7). Thus equations (4-5) and

(4-6) can be solved for _ and _ independent of 0 . The
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temperature (8) can be solved from equation (4-7) whenCande

are known. The computational procedures of stream function-

vorticity equations and the energy equation are described in

the following.

4.4.1 Computational

Procedures Of The ¢-_

Equation

The aim of the present investigation is to obtain the

steady solutions of the Navier-Stokes equations (4-5) and

(4-6) and the energy equation (4-7). It can be obtained by

the time marching procedure instead of the iterative method.

This casts the problem from steady state into unsteady state

with the initial quess for the steady problem as the initial

condition for the unsteady problem. This time marching

procedure has a certain advantage over the iterative method

which is to be discussed in the last section of this

chapter. The time marching procedure is briefly outlined

here.

.

o

Assign a proper marching time step At, and input the

boundary conditions of stream function _.

Start with some initial quess of the vorticity, _ ,

at kth time step for all unknown nodes of the problem

including the unknown boundaries. Typically, one may,

at the beginning, assume zero or a constant value for

k
.
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3. Calculate FA coefficients for the stream function as

defined by equations (4-22) and (4-32a).

4. Solve the system of FA algebraic equation (4-33) by

the line-by-line implicit iterative method to obtain

the new solution lat (k+l)th time step. The

iterative process in obtaining the stream function

k+l
for _ is termed as 'the inner iteration for the

stream functions '

5. Calculate the FA coefficients for the vorticity

transport equation (_-5) defined by equations (4-22)

and (_-16).

6. Determine the vorticity value on the boundaries from

the vorticity boundary equations, such as equation

(4-11a). Details of the the derivation of these

equations are to be discussed later in each problem.

7. Solve the system of the FA algebraic equations for

vorticity defined in equation (4-21) by the line-by-

line implicit iterative method to obtain the new

solution, k+l at (k+l)th time step. The iterative

k41.
process in obtaining the vorticity for _ is termed

as 'the inner iteration for the vorticity, _ '

8. Repeat steps (4) to (7) for the marching time step

k=I,2,3, - .... until the convergence criterion (to be

specified in each problem later) of steady state

solution is met. The marching procedure from (4) to

(8) is called an outer iteration.
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This computational procedure step (I) to (8) described above

is referred to the computer program given in Appendix C.

4.4.2 Computational

Procedures Of The e E_lation

For an incompressible, two-dimensional flow with

constant viscosity, the Navier-Stokes equations are

uncoupled from the energy equation so that (x,y,t) can be

solved from equation (4-7) after equations (4-6) and (4-6)

have been solved. The FA solution of equation (4-7) is given

in equation (4-35). Since the convection terms of the energy

equation (4-7) are determined from equation (4-16) of the

Navier-Stokes equations, the temperature distribution, e ,

for the problem can be solved with proper boundary

conditions. Therefore, the computational procedure of the

energy equation (see Appendix C-6) is similar to that of the

stream function-vorticity equations given in Section (4-4-1)

except without the outer iteration.

4.4.3 Remarks On Time

Marching And Iterative
Procedures

In this section the relation between the unsteady time

marching computational procedure and the steady iterative

procedure is discussed. It is often asked which procedure,

the time marching procedure or the steady iterative

procedure, is best for calculating the steady flow solution.
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It is shown in this section that these two procedures are

closely related if the relaxation parameter used in the

iterative procedure is allowed to vary in a certain way. The

solution of vortzcity as an example is discussed now. In

order to stablize the numerical computation for the steady

vorticity transport equation (4-5), the under-relaxation

factor, 7, is often used, where Y is defined as :

k k-i -k k-i= _ + _( _ _ ) . (4-37)

Here k-I denotes the (k-l)th iteration of the variable.

is the relaxed funtional value of e after the kth iteration

_k
and is used in the next iteration. _ is the value of e just

calculated from the kth iteration. It should be remarked

that for the under-relaxation, 7 , is normally chosen to be a

constant between 0 and 1 during the iterative calculation

"for the steady solution of e. In the present formulation the

problem is cast in the unsteady time marching procedure in

equation (4-30). The question becomes how this unsteady time

marching problem is related to the iterative procedure of

equation (4-37). By examining the unsteady solution given in

equation (4-30), the first two terms in the right hand side

of equation (4-30) can be redefined as

8

-k_,_ k _-i= _f C + Cp , (4-38)
n= 1 n n
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whizh can be considered to be the value of vorticity just

calculated from the kth iteration. With the expression of

equation (4-38), equation (4-30) can be written as

-k k-I
k k-i 1 ( _ _ _ ) . (4-39)

'_ = ;J + Cp Re j2

i+ oat

By comparison of equations (4-39) and (4-37), one finds that

if the relaxation factor y of equation (4-37) is identified

as

1 (4-40)

aAt

then equations (4-38) and (4-36) are identical even though

the superscript k in equation (4-38) denotes the time step

while in equation (4-36) denotes the iteration step. It is

noted that the value of Y in the present analysis is always

2

smaller than one, since (%ReJ)/(A_) in equation (4-40)

is a positive quantity. It should be noted that _ expressed

in equation (4-39) is dependent on the time step, the

Reynolds number, curvilinear coordinate parameters J and n,

• Further C (see equation(4-23))and the FA coefficient Cp P

is a function of local convection terms A and B and grid

size. Therefcre one may conclude that the relaxation

parameter 7, (or rather a relaxation function) derived in

i
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the present analysis varies from one node to another

depending on the grid size, Reynolds number, and local

convective terms. This leads to the conclusion that if the

relaxation parameter y is identified as equation (4-40) the

calculation of steady flow solution equation (4-37) or

equation (4-39) is essentially identical. Thus, in this

investigation the steady problems are solved by the unsteady

time marching procedure. In the following chapters, several

problems are solved by the FA method with and without

boundary-fitted coordinate system. In Chapters V and VI,

because the problem boundaries are specified on the

Cartesian coordinates, there is no need to make for

boundary-fitted coordinate transformation. Therefore, the

accuracy of the FA solutions can be examined without the

adoptation of the boundary-fitted coordinates. In Chapters

VII and VIII more complex geometries are treated. There, the

FA solutions are solved on the boundary-fitted coordinate

system.

J
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CHAPTER V

CONVECTIVE HEAT TRANSFER IN CAVITY

5.1 General Remarks

The cavity flow problem considered in this

investigation is a two-dimensional square cavity where three

walls are stationary while the fourth wall moves at a

u_iform velocity along its own plane. Because the wall

boundaries coincide with the Cartesian coordinates, the

problem can be solved by the FA method on the Cartesian

coordinates without involving further boundary-fitted

coordinates.

The cavity problem is of theoretical importance,

because first it is a part of the larger class of steady

separated flows and secondly it is a flow where the

transport properties and the nonlinear convection affect the

entire flow region.

The finite difference and the finite element numerical

methods have been used extensively for the evaluation of low

and high Reynolds number problems in the cavity flows. Early

attempts using second-order central difference

approximations to the terms in the governing equations

representing convection [14] were found difficult to produce
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stable solutions for the Reynolds number above 400 at which

the experiments of Mill [15] and Pan and Acrivos [161

indicated that the flow remains stable and laminar. Later

solution for high Reynolds number flows have been obtained

by Greenspan [17], Gosman, et al. I18], de Vahl Davis and

Mallinson [19], Nallasarmy and Prasaa [20], and Olson and

Tuann [21]. It is, however, known that the upwind

differencing not only produces significant truncation

errors, but also the Dumerical diffusive effect which

augments the effects of viscosity [22,23]. Considerable

controversy has ensued over the significance of the false

_Jiffusion [23], especially in the case of the high Reynolds

num]zer flow when the physical diffusion is weak.

Although many numerical solutions by the finite

difference or the finite element methods are available for

the cavity flow problem, little work is available for

solutions of the heat transfer in the cavity flow.

Therefore, in the present investigation, the temperature

distribution and heat transfer characteristic in the cavity

are studied. Formulation of the cavity flow problem is given

in the next section where a brief review of the FA solutions

for stream function and vorticity in the cavity flow as

proposed by Chen et al. [4] is made. In this study the FA

solutions for Peclet numbers ranging from i0 to 20,000 and

Reynolds numbers from 200 to 2,000 are then obtained.
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5.2 Formultion Of Problem

Consider a square cavity as shown in Fig. (9) where

the cavity depth and width have a length L. The bottom wall

at a temperature T moves with a speed Ur in the positive x-

direction. The other walls are at rest and at an isothermal

temperature T w. The flow is assumed to be two-dimensional,

incompressible, laminar and steady. The characteristic

velocity and length are taken to be U r and _respectively

and the dimensionless temperature _ is defined as (T-Tw)/(%

-Tw). The dimensionless Navier-Stokes equations in the

stream function-vorticity formulation and the energy

equation given in (4-I), (4-2) and (4-4) are rewritten as

below :

Re ( _,y _ - If,x _y ) = _ + _i , (5-1)x _ _%,

V2_ = -_ , (5-2)

Pe (_y 0x - _'x _, ) = 0 + _xx Y_' • (5-3)

These equations are written in the Cartesian coordinates due

to the geometric simplicity of the cavity. The boundary

conditlons to be satisfied are the non-slip and impermeable

condltions and the isothermal wall conditions, i.e.

On the bottom wall, y=O, O<x<l

_'=0, C'y =i, 0 =i.
(5-4)
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=0, _ =0, e=o. (5-5)
Y

On the top wall, y=l, O<x<l

¢ =0, _y=O, 8=0. (5-6)

The vorticity boundary conditions for equation (5-1)

may be approximately derived from the above boundary

conditions using the Taylor series expansion of the stream

function from the wall to an interior point normal to the

wall [I]. the vorticity boundary functions are approximated

as follows :

-2 _(x,Ay) + ! (5-7a)
e (x,0) - 2 Ay '

Ay

-2 _ (Ax,y) (5-7b)

e (0,y) - Ax 2

e(l,y) = -2 _(l-Ax,y) (5-7c)
Ax 2

-2 _(x, l-Ay)
e (x,l) - 2

Ay

(5-7d)

At the four corners, they are

e(l,l) = e(0,1) = 0 , (5-7e)

2 (5-7f)
_(o,o) = o_(i,o)= A"_ "



ORIGINAL PAGE |ill

OF POOR QUALITY
57

In this investigation, the cavity flow region is discretized

with 41'41 nodes for calculation for the Reynolds number of

I00 and 1,000, and 61"61 nodes for Re= 2,000. For each

Reynolds number three different Prandtl numbers, 0.I, 1 and

I0 are considered. Temperature profiles in the cavity as

well as heat flux at the moving wall are also studied.

5.___33 FA Solution Of The Cavity Flow

In Chapter IV, the FA solutions cf stream function (_),

vorticity (_) and temperature (8) are derived in the

transformed plane (_,n,t). However, in the cavity flow

problem, because of the simplicity in geometry, the

Cartesian coordinate system is obviously the best choice.

Therefore, the FA solution in equation (_-5) for general

boundary-fitted coordinates can be easily reverted back to

the physical plane. This can be done by letting the

coefficients relating the transformation to be

L

i

i

I

The FA solutions of equations (5-1) through (5-3) for_ ,_

and 8 can be obtained by substituting the above coefficients

into the equations (4-21), (4-33) and (4-36). In obtaining

these FA solutions of the cavity flow, several

simplifications are made because the problem was solved at

the early stage of the present investigation.
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The boundary function for an element is approximated

by a simple second-order polynomial rather than the

function which combines the linear and exponential

function.

For simplicity, the velocities in the convection term

are linearized by the area average of the velocity

distribution in the element, i.e.,

U= 136 (u_,_+5,_+uS_+UsE) +4 (UEc+ _ ÷5,_C+

+ _c ) + i_ _ ,

U_ 1
36 (vi_+_+va_+VsE)+4 (v_+vm+ V_c+

+Vsc )+ 16vp

3. The inhomogeneous terms, e , of the equation (5-2)

based on Naseri-Nashat [3] is approximated by a

second order polynomial of x and y. When the FA

solution of equation (5-2) is evaluated at the center

node, P, the algebraic equation obtained involves the

values of _p at the 9 points of the element. For

details see Ref. [41.

_. The line-by-line impllcit iterative method J s used

for solving the stream function and vorticity

equations (5-1) and (5-2), instead of the time

marching method.
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Further analysis of the cavity flow problem can be found in

Chen, Naseri-Nashat and Ho [4].

In this investigation, the convergence criterions for

computing _, wand@ between two iterations arel_¢max I <IO_

I_axl< i0-4 and 148 maxl< 10 -4.

5._ Stream Function And

Vorticit¥ Distribution

The stream function and vorticity distributions of the

two-dimensional steady square cavity flow are calculated by

the FA method [3] and plotted in Fig. (I0) and (II). Figure

(I0) gives the contour of the stream function for Re=lO0,

i000 and 2000, at an interval increment of _=I0 -2 It is

seen that at the low Reynolds number of I00 the stream

pattern is only slightly distorted by convection such that

the center of the primary vorte_ is located close to the

moving wall at (0.66, 0.30). For Re=100, the present

calculation shows that the flow separates at the two upper

corners of the cavity. This is in agreement with the

experiments of Mill [15]. When the Reynolds number is I000

as shown in Fig. (I0), the primary vortex moves away from

the moving wall toward the geometric center of the cavity.

The streamlines become more circular near the center while

the two secondary vortices at two upper corners grow much

larger than those for Re=100. The right-hand secondary

vortex is distinctively larger than the left-hand secondary
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vortex. When the Renolds number is 2000, the primary vortex

is almost positioned at the center of the cavity. This is

also in agreement with experiments [24] which show that in

the flow of high Reynolds number, 105, the primary vortex is

almost located at the center of the cavity. In the present

calculation a third secondary vortex is predicted near the

upstream corner where the moving wall and the stationary

wall meet. This third secondary vortex can be vaguely seen

from Mill's experiment [24] and is in agreemwnt with Olson

and Tuann's calculation [21] with the finite element method.

They predicted that the third secondary vortex comes to

exist at Re= 1500-2000.

The vorticity contour is shown in Fig. (II). It shows

that at low Reynolds number of I00 the diffusion is so

strong that the vorticity generated by the moving wall is

readily diffused into the cavity. The vorticity strength is

largest at two lower corners where the moving wall and the

stationary wall meet. As the Reynolds number is increased to

I000 and 2000, the vorticity is pretty much confined to the

near wall region particularly near the moving wall and the

right wall where the flow does not separate from the wall

and exhibits the boundary layer phenomena. Once the flow

separates at the upper corner the vorticity penetrates

slightly more into the cavity but still is confined largely

to the corner. In general, the central region of the cavity
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is occupied by the primary vortex with a constant vorticity

• =1.59 for
evc For example, mvc--l.62 for Re=f000 and evc

Re=2000.

5.5 Temperature
Distribution And Heat

Transfer

The temperature distribution and heat transfer across

the moving wall are calculated by the FA method and plotted

in Fig. (12) through (16). Fluids with Prandtl numbers of

0.i, 1.0 and i0 are considered for Reynolds numbers of I00,

i000 and 2000. This combination gives the range of Peclet

numbers from iO to 20,000. The calculation of Pe=20,000

normally is difficult for both the finite difference method

and the finite element method. However, in the present

finite analytic method the same FA solution is used for pe=

I0 to 20,000 without difficulty.

Figure (12) shows the isothermal lines for Re= I00 and

Prandtl numbers of 0.i, 1.0 and I0. It is noted that the

isothemal lines for the three Prandtl numbers are quite

different even though the velocity field is identical at Re=

I00. At Pr=O.l or Pe= I0, the fluid convection does not seem

to distort much of the temperature profile as the isotherms

remain fairly symmetric about the vertical central plane.

This is because for Pr=0.1 the thermal diffusion is ten

times stronger than the momentum diffusion so that at a
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moderate Reynolds number of I00 the convection of fluid has

a weak influence on the heat diffusion process. When Pr =

1.0 and Re= IO0 the temperature profile as shown in Fig.

(12) gives close resemblance to the vorticity plot for Re =

I00 in Fig. (Ii). This is because the governing equations

for e and @ are identical except that the boundary

conditions for vorticity and temperature are different.

Burggraf [14] has calculated the temperature profile for Re=

I00 and Pr= 1.0. The present result in Fig. (12) for this

case is almost identical to the Burggraf results. Figure

(12) also shows the effect of convection on temperature.

That is since the primary vortex convects the fluid in the

counterclockwise direction the fluid absorbs heat from the

moving wall and then is convected upward along the right

wall. As a result the isotherms are distorted toward the

right. For fluids of Pr = I0, Fig. (12) shows the existence

of closed isotherms. This implies that near the primary

vortex center there exists a constant temperature core just

as the constant vorticity core at the vortex center. With

pr= i0 and Re = i00, the Peclet number is I000. Except for

the boundary conditon the temperature solution from the

energy equation (5-3) for pe= I000 is similar to the

vorticity solution from the vorticity transport equation

(5-1) at Re = IOO0. Examining the vorticity plot for Re=

I000 in Fig. (ll) and the temperature plot for Re = I00 and
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Nu = h(x) L 80= , (5-8)
k _Y y=0

l

Nu = f Nu dx . (5-9)
0

as

Pr= I0 in Fig. (12), one finds that there is similarity

between e and 9 profiles except near the wall where boundary

conditons for e and 8 are different. Figure (13) shows the

isotherms for Re= i000 and pr= 0.I, 1.0 and IO. It is seen

that the isotherms in Fig. (13) for Re= I000 and pr= 0.I are

quite similar to the isotherms in Fig. (12) for Re=lO0 and

Pr= I. Figure (13) shows that as the Prandtl number is

increased to Pr = 1.O and I0 the temperature distribution

starts to show the phenomenon of boundary layer development

near the moving wall and the right-hand wall. The region of

constant temperature core is gradually enlarged and occupies

a large portion of the cavity. When Re= 2000 the isotherms

for pr= 0.I, 1.0 and I0 are plotted in Fig. (I_). In

addition to the temperature boundary development and the

spread of constant temperature core, the strong circulation

in the secondary vortices begins to distort the temperature

distribution at the upper corners particularly for the case

of pr= I0. The calculation of isotherms for Pe= 20,000 can

be done with the FA method without difficulty of instability

or the need of upwinding approximation.

The local and mean Nusselt number i.e., Nu and N---u-may

be expressed from the local heat transfer coefficient h(x)
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They are tabulated and shown in Fig. (15), (16), (17) and

(18). Figures (15), (16) and (17) plot the local Nusselt

number along the moving wall. It is noted that at both lower

corners of the cavity the temperature jumps from 8 = 0 on the

stationary wall to 8= 1 on the movin_ wall. Therefore, the

local _usselt number theoretically becomes infinite and is

avoided in the calculation. Figure (15) shows the local

Nusselt number for Re= I00 with Pr= 0.I, 1.0 and I0. The

general trend is that heat transfer is strong near the

upstream corner x = O, and gradually decreases till near the

downstream corner x= 1.0, where the heat transfer is

increased again. Physically, this is because the fluid near

the moving wall is heated up at the upstream so that there

is less heat transferred from the moving wall to the fluid

at the downstream. When the moving wall comes close to the

right stationary wall, which serves as a thermal sink, then

a large heat flux can again be transferred from the moving

wall to the stationary wall. At large Reynolds numbers of

I000 and 2000, because of strong convection in general, the

Nusselt number for a given Prandtl number is larger than

that for the low Reynolds number of 100 as shown in Fig.

(15), (16) and (17). From these figures it can be seen that

since the flow patterns are different for each Reynolds

number the correlation of local Nusselt number with Reynolds

number cannot be made into a simple equation as done in
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boundary layer flow. For given Reynolds numbers of I000 and

2000, the larger the Prandtl number is the larger is the

Nusselt mumber. When Pr= I0, both flows for Re= I000 and

2000 show the Nusselt number decreases near the corner and

then increases again in the central portion of the moving

wall. Th_s may be explained as follows. Near the central

portion of the moving wall the convection is strong and the

Nusselt number is obviously large. It should be remarked

that since the thermal diffusivity for the fluid of Pr= i0

is small, the thermal energy transferred to the fluid from

the movimg wall is convected around the constant temperature

core at the cavity center and eventually conducted through

the stationary wall. Near both lower corners where the

convection is weak and the thermal diffusivity is also small

for fluid of Pr= i0, the heat transfer and hence the Nusselt

number decreases. However, at the extreme corner because the

large temperature gradient exists between the moving wall

and the stationary wall, the heat transfer and the Nusselt

number increase again.

The average Nusselt number for each fluid of Pr = 0.i,

1.0 and I0 is plotted in Fig. (18). It shows that the heat

transfer can be enhanced if the Reynolds number is increased

and that the different value of Prand_l number can affect

m_rkedly the heat transfer particularly at the high Reynolds

number cavity flow. The correlation of mean Nusselt number
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with the Reynolds and Prandtl numbers can be approximately

expressed as

Nu = 0.71 Re 1/2 Pr 1/3 . (5-I0)

5.6 Conclusion

The FA method is developed here based on the assembly

of the local analytic solution obtained in small elements of

the problem. The FA solution is derived for the two-

dimensional Navier-Stokes equations in the stream function -

vorticity formulation and the energy equation. The FA

solution is shown to be stable from small Reynolds number

(or Peclect number) to large Reynolds number (or Peciet

number), i.e., Re= i00 - 2000 (or Pe = I0 - 20,000). The heat

transfer and flow problem considered is a square cavity flow

with the moving wall held at an isothermal temperature and

the stationary walls held at another isothermal temperature.

The temperature distribution, heat transfer, stream function

and vorticity distribution are predicted for Reynolds

numbers of i00, i000 and 2000, and Prandtl numbers of 0.I,

1.O and I0.

It is shown that the FA method does not require the

_pwind approximation as needed in the finite difference

method or the finite element method for the calculation with

the Peclect number varying from i0 to 20,000. It is found
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that for the range of Reynolds numbers calculated if the

Peclet number is I000 or larqer there exists a constant

temperature core in the cavity,

F,
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CHAPTER VI

SEPARATION OF CHANNEL FLOW

6.1 General Remarks

The ability to predict accurately the flow separation

and subsequent re-attachment has been challenging fluid

dynamicists for many years and is considered important in

industrial designs and applications. In many instances

separation uf flow is undesirable and leads to unwanted

pressure drops and energy losses which require additional

power to overcome them. However, in other circumstances,

flow separation may be advantageous. For example, tubulence

induced by flow separation may promote and enhance heat and

mass transfer rates, in this chapter , flow separation in a

channel is investigated by the FA numerical method. Again,

since the channel boundaries are specified on the Cartesian

coordinates, no further boundary-fitted transformation is

necessary in obtaining the FA solutions.

In the previous related works on laminar separated

flows, several channel geometries shown in Fig. (19) were

considered. For example, Macagno and Hung [25] and Iribarne

et al. [26] solved the flow through an axi-symmetric sudden

pipe expansion (Fig. (19-a)). Goldstein et al. I27]
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measured the flow structure associated with a downstream-

facing step in a flat wall adjacent to an essentially free

stream as shown in Fig. (19-b). Durst at el. 128] conducted

mesurements in a rectangular duct with downstream-facing

steps on both walls (Fig.(19-c)). Denham and Patrick [29]

measured the flow over a backward facing step placed in a

flow channel (Fig. (19-d)). In the present chapter, the

problem chosen is channel flow over a backward facing step

as shown in Fig. (19-d).

There are several reasons for this selection. First,

Denham and Patrick provided extensive experimental data at

four different Reynolds numbers (Re=73, 125, 191 and 229) by

dye and laser anemometer measurements for comparison with

computational results. The Reynolds number, Re, in the study

[29] is defined as Re=Uh/_, where U is the mean velocity in

the inlet section and h is the height of the step. Secondly,

the calculation of flow over a backward facing step demands

less computational domain than that of the symmetrical plane

expansion. One may argue that the latter case can be solved

with either top or bottom half from the symmetrical line.

However, the relatively high momentum fluid near the center-

line for the latter case tends to elongate the separation

zone and hence requlres longer computational domain than

that proposed in the present study. Finally, both the FD and

the FE solutions were available for the proposed laminar
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channel flow. They serve as a basis for comparision with the

FA numerical solution.

In the previous numerical works of this proposed

laminar channel flow, Atkins [29] considered both the fully

developed inlet profile and the experimental inlet profile

in the FD calculation. Atkins [30] also repeated the same

numerical calculation with both upwind and central

difference schemes six years later. He showed that better

results were obtained and in agreement with experimental

measurements if the experimentally measured inlet profiles

were used. However, little discussions about the grid size

and the numerical scheme were given. The EE solution was

obtained by Hutton and Smith [31] and Thomas, Morgan and

Taylor [32]. button et al. and Thomas et al. predicted

longer lengths of separation zone than those of experimental

measurements mentioned in [29]. In order to stablize the

numerical computation they had to use the upwind technique

and a special outlet boundary condition (_v/_x = 0).

Unfortunately, details of the grid size and the numerical

scheme for the numerical calculation at different Reynolds

numbers were not given.

From these studies, one finds that the available

numerical schemes still have difficulty in obtaining

accurate and stable results in flow with separation. Thus,

the FA method is applied to solve this problem in an attempt
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to obtain better numerical predictions. In this chapter,

the FA solution is compared with the best available

numerical and experimental results. Details are presented in

the ensuing sections.

6.2 Formulation of Problem

The dimensions of the single plane duct expansion is

shown in Fig. (20). The height of the step, h, is one half

of the height of the upstream channel, H (i.e. the expansion

ratio is 1.5). The ratio of the entry length (EF) of the

upstream channel to the step is 4/3. The direction of the

flow is in the positive x-direction.

Due to the simple geometry of this channel flow, the

Cartesian coordinate system is used. If the upstream channel

height, H and the maximum velocity, Umax, in the inlet

section are selected as the characteristic length and the

characteristic velocity, the dimensionless Navier-Stokes

equations in stream function-vorticity formulation are

RaH + _xx yy
, (6-1)

where

= v- Uy = - V2_ , (6-2)

and

U = _F ' v = - _x ' (6-3)
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In equation (6-I), Re is the Reynolds number and is

defined as U H/u. It should be remarked that in order to
max

compare the numerical results with the experimental

measurements of [29] in which a different definition of the

Reynolds number Re is used, the present Reynolds number Re

is related to Re as

Re H = U H/_ = 1.50 2h/v = 3Remax
(6-4)

The elliptic partial differential equations (6-1) and

(6-2) are coupled. They can be solved uniquely if the

proper boundary conditions are specified for e , and _ . With

the aid of Fig. (20), the boundary conditions at the inlet,

outlet and boundary walls aze given as follows :

at y=l, i.e. the upper wall AB,

_= _0 = Q' _x = 0, _y 0.

at the bottom wall DC and the step FFD

_x = 0._=0, =0, _y

at the inlet, the fully developed velocity profile is

assumed, or

u = = _y(l-y)

v = _x

2
or ,_ = (2-4y/3)y

(6-5)

(6-6)

(6-7a)

This gives a discharge Q=2/3 at the inlet. The vorticity at

the inlet is obtained from equation (6-2) and the velocity

at the inlet. Thus
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_v
= -4+8y+-- , (6-7b)

_x

73

where _v/_x can be approximated by the backward difference

formula.

At the far downstream where x=L the velocity in the

channel is assumed to be fully developed, or a Poiseuille

velocity profile given by

16 y2
u = _y _-(l+y-2 )

(6-8a)
v = - %=0 ,

where the numerical value 16/27 is needed to conserve the

mass flow of Q=2/3 which is obtained from the inlet velocity

profile. The stream function and vorticity boundary

conditions at the far downstream position are obtained from

this velocity distribution. This gives

2
= _-(7/3+8y+4y2-16/3y 3 ) ,

16

= 2-_- (4Y- 1 ) (6-8b)

The vorticity boundary condition at the solid wall can

be evaluated from equation (6-2) when the stream function is

known. Taking a Taylor series expansion of the stream

function normal to the wall and involving the non-slip

condition and the stream function at the wall, one has the

vorticity boundary functions as follows :

at the upper wall AB, y=l
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e(x,l) = -2 [Q- _x,I-Ay)]/Ay 2 . (6-9)
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at the bottom wall-D--C, y=-0.5

(x,-0.5) = -2 _(x,-O.5+Ay)/A_.

at the step FE and ED,

(x,0) : -2 _(x,_y)/_,

2
(O,y) = -2 ¢ (0, y)/Ax

(6-10)

(6-ii)

For the corner points, the vorticity can be obtained again

by using a Taylor series expansion for the stream function

in both x and y directions. This gives

(-2/3,1) = 2 [Q-_(-2/3,I-Ay)]/A_,

(L,l) = 2 [Q- (L, I-A y) ]/A y 2,

(L,-0.5) = -2 _ (L,-O.5+Ay)/Ay 2,

(0,-0.5) = O, (6-12)

(0,0) = -2 [_x,0)/A_ * _ (O,Ay)IA_I,

<o (--2/3,0) = -2 ¢(-2/3,Ay)/Ay2

6.3 FA Solution

As mentioned before, because the geometry of the

backward facing step and the channel is relatively simple,

the Cartesian coordinate system is employed to solve this

channel flow problem. The governing equations derived in

equations (6-i) and (6-2) and their corresponding FA
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solutions in an element obtained in equations (4-21) and

(4-33) in the transformed plane can be easily reverted to

the physical plane. This is done by simply considering (_,_)

as (x,y) and let

C_ = y= J = 1

and 8 = (_ = • = O.

(6-13)

In other words, the FA solutions evaluated at the center

node, P, of an element for the stream function and vorticity

in equations (6-1) and (6-2) are identical to those of

equations (4-21) and (4-33) in the transformed plane. They

are

8

n= 1 n n

8

*p = Z C' _n + _ gp
n=l n

, (6-14)

(6-15)

! ! I !

Here C , % C and C are identical to those in equationsn ' n P

(4-21) and (4-33) except that the transformed coefficients

are given in equation (6-13) and gp is without the unsteady

term.

Furthermore, in the present study the unequal grid size

of Ax=h=5/3 and Ay=k=O.l _s used for the main series of

computations. Under this consideration, the FA coefficients

!

Cn of the FA solution in equation (6-15) for the stream

function performed in the physical plane become invariants,

namely
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! !

CEC = CNC = 0.07488,

! ! ! !

CNW = CSW = CSE = CNE = 0.03909,
! !

CNC = CSC = 0.34695, (6-16)

Cp = 0.00425.
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6.4 Results And Discussion

In the computation, the length L from the step to the

downstream boundary is chosen as 205 which is 13.66 times

the height of the step. In this study, Re=25, 50, 73, 125,

191 and 229 (where experimental data ceased) are considered.

The unequal grid size 0.166"0.1 is used. The results of the

FA solutions of the stream function and vorticity for the

two-dimensional channel over a backward facing step are

shown in Figs. (21) and (22). Figure (21) gives the contour

of stream function _/_0 for Re=25, 50, 73, 125, 191 and 229

at an increment of _ /40 = 0.I. It is seen from these

figures that separation occurs at the step edge and the re-

attachment point is shifted to downstream as the Reynolds

number is increased over the range considered. The

recirculation zone length, LR, (i.e. the distance from the

step to the re-attachment point) is an important parameter

to characterize the flow in the separation region. This

quantity is plotted against the Reynolds number (Re) in

Figs. (23 - 24). In Fig. (23), the results of the present
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study are compared with the experimental measurments of

Denham and Patrick [29] who made dye-tracer observations and

laser anemometer measurements. It is shown that the

recirculation zone lengths obtained by the FA method are

slightly longer than those of experiments at the low

Reynolds number (Re<75). However, at the higher Reynolds

number (Re>200) the predictions are in excellent agreement

with the experimental results. The reason for over-

prediction of recirculation length at low Reynolds number

may be due to the fact that the location of the outlet

boundary is specified at only x = 13.66 h from the step.

Therefore, the parabolic velocity profile specified at the

downstream boundary may significantly influence the flow in

the upstream at the low Reynolds number (Re<75).

The recirculation lengths computed by the FA method are

compared with those by the FD and the FE methods as shown in

Figs. (24) and (25). In Fig. (24), it is shown that Atkins

[30] calculated with the FD method using the fully developed

inlet profile predicted a much longer recirculation zone

length for Reynolds numbers greater than 150, and that using

the experimental inlet profile yielded better results. The

velocity profile at the inlet section does have a strong

influence on Atkins' numerical results. This is not found in

the present calculations with the FA method in the range of

the Reynolds numbers considered. Figure (25) compares the FA

7
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solution with the numerical results of Hutton and Smith [31]

and Thomas et al. [32] obtained by the FE method. Hutton and

Smith employed the special boundary elements in the wall

region close to the step, and the best numerical results of

Thomas et al. were obtained by using the upwind scheme and

specifying the outlet boundary conditions as _v/_x = O. It

is evident in Fig. (25) that although the upwind scheme and

use of the special boundary element predict reasonable

results at the low Reynolds number (Re), the predicted

separation length for high Reynolds number (Re) overpredicts

that measured by the experiment by a substantial error. From

the comparison.given in Figs. (23 - 25), It is concluded

conclude that the separation lengths obtained by the FA

method are closer to the experimental measurements than

those of the FD and FE methods.

The recirculating mass flow rate is another important

parameter of separated flows. In Fig. (26), the total

recirculating mass flow rate relative to that in the

mainstream is denoted by the minimum value of _/40 which has

a negative value in this problem.-_is plotted against

the Reynolds number in Fig. (26). In accordance with the

present FA calculation the minimum value of _ ./40 remains
mll_

approximately constant over the range of the Reynolds

numbers considered (Re= 73 to 229) at a value of -0.027

which is larger than -0.023 predicted by Akins [29].
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However, Akins does not provide the recirculating mass flow

in his latter work [30]. The present FA prediction of

recirculating mass flow rate at the higher Reynolds number

(Re>200) is in agreement with the experimental data,

although at Re<200, the FA prediction is somewhat less than

the experimental measurement. This again may be interpreted

as the effect of the location of the oulet boundary and the

velocity profile assumed.

The similarity of the recirculation region flows at the

six Reynolds numbers is illustrated in Fig. (27). Figure

(27) shows the position of the separation streamline with

the downstream distances normalized by the recirculation

zone length. The points of numerical results by the FA

method lie close to a single curve, and the position of the

center of the recirculation region (the point where minimum

_/_0occurs) also remains nearly constant. This position of

the vortex center may be given by the coordinates, x C = 0.3

L and YC = 0.6 h.R

Finally the comparison between the measured velocity

profile at Re=125 and the predicted velocity profile using

the fully developed parabolic profile, is shown in Fig.

(28). The agreement is good as far as the re-attachment is

concerned, but further downstream a slight difference is

observed. This may be due to the fact that in reality the

flow requires longer distances to become fully developed.

C
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6._ Special Case Of Channel Flow

If, for the problem of laminar flow over a backward

facing step shown in Fig. (27) it is assumed that the length

(EF) upstream of the step vanishes, the pzoblem that of a

suddenly expanded channel flow. The IAHR (International

Association of Hyaudraulic Research) working group on

refined modeling of flows adopted this problem as a working

problem at the fourth meeting of refined modeling of flows

in the winter of 1981. The configuration of the suddenly

expanded channel flow w_th expansion ratio 2 is shown in

Fig. (27). The height of the channel at the inlet is one

half of the height of the channel and the downstream length

L is 16 (it is eight times the height of the channel). In

this study, the characteristic length and velocity are the

height of the step, h, and the maximum velocity at the

inlet, Uma x, respectively. The Reynolds number in this

special ca_e, Re s, is defined as Umaxh/_.

6.5.1 Boundary Conditions

The boundary conditions of the suddenly expanded

channel flow are simi[ar to that given in Section VI-2 and

are

at y = O, i.e. the bottom wall,

,:= 0, I = 0, ; = O.
× Y (6-17)



at y = 2, i.e. the upper wall,

= 0, _x = o, _y: o. (6-lS)
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at the inlet station, the follwing velocity profile is used

u= _y=

v = - _ =0
x

tanh [30(y-1)] for

tan/% [SO(2-y)] for

l<y<l.5 ,

I. 5<y<2 ,

(6-19a)

The velocity at the vertical wall i_ zero. The stream

function at the inlet is expressed as

1/30 log[cosh (30(y-l)] for

-i/30 log[cosh (30(2-y)] for

l<y<l.5 ,

1.5<y<2.

(6-19b)

This gives a discharge mass flux Q=0.95379 at the inlet.

The vorticity at the inlet is obtained from the definition

of the vorticity equation (6-2) by taking the derivatives of

the velocities and is

I -30 sech 2 [30(y-l)] + v for
x

<'_= I 30 sech 2 [30(2-y)I ÷ v for

x

l<y<l.5,

(6-19c)

1.5<y<2 ,
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where v can be approximated by the second ordez backward
x

difference formula.

At a downstream distance of x=L, a Poiseuille velocity

profile is again assumed as follows

Y

x

= u(L,y) = 0.75 Q y(2-y),

= -v(L,y) = 0

The stream function and vorticlty boundary conditions at x=L

are obtained by integrating the above velocity distribution.

This gives

: 0.25 y 2 (3-y),

: 1.5 Q _y-l)

The vorticity boundary conditions at the solid wails

and their corners are derived from the Taylor series

eapansion of the stream function ezther normal to the wall

or in both × and y direction. They are given below :

L

,,_(x,O) = -2,,,, (×,,,y)/\y2 ,

,,(x 2) = 21Q ,;. (x _-\y)l _ 2, - , _ /.\ Y ,

,,_(O,y) = -2 'I' (.\x'y)/'3_2 '

,o(0,0) = 0 ,

.,'(L,O) = -2 'I' (L,.\y)/.\y 2 ,

.,, ( O, 2-.\ y ) l,/.\ ¥ 20(0,2) = -2[Q - ,,

2
,,,(L,2) = 2[Q - :_(L,2-\y)I/.\y ,

',x 2 )/Ay 2.,,(0,1) = -2{; (.',X, 1)/ , (0, '*.%y ]
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6.5.2 Recovery Of Pressure

When the stream function-vorticity equations (6-1) and

(6-2) are solved, the velocity can be easily obtained from

differentiation of the stream function given by equation

(6-3). The pressure distribution can be computed from the

Poisson equation (6-22) which can be deduced from the

momentum equations by taking the divergence.

Pxx + Pyy = 2(UxVy " %_Uy) = f (6-22)

It should be noted that equation (6-22) is similar to

equation (6-2) for the stream function. /he pressure

boundary condition can be obtained by using the Taylor

series expansion of pressure about the pressure at the

interior nodes. The algebraic equation for the pressure

evaluated at the center node P of an element is the same as

that of the stream function in equation (6-15) except

replacing _ by P and _p by fp. It is

8 , ,

PP =n=l_ Cn Pn + Cpfp (6-23)
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6.5.3 Results And Discussion

In contputing the channel flow with a sudden expansion,

both Res=200 and 400 are considered. For Res=200, an equal

grid 0.2*0.2 and an unequal grid 0.5*0.2 are used. For Re s

=400, the grid 3ize used is O.I*0.I.
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The algorithm of the FA solution is the same as that in

Section VI-3 by casting the steady state problem as an

unsteady one. Thus time marching procedure and internal

iterations are needed for calculating stream function and

vorticity. In the present FA calculation 20 and 12 internal

iterations are respectively used for calculating the stream

function and vorticity. As mentioned before in Chapter IV,

since the time marching procedure is used in this channel

flow problem, it does not need to consider the relaxation

factor. The time step becomes the only parameter to be

controlled. In this study, all of the results are obtained

with a time step of 0.2.

For the cases Re =200 and Res=400, after 151 time steps
s

of computation the maximum difference of I _max I <lO%or

and i_maxl<10-4 for _ between two time steps'lare found and

the steady state condition is assumed to be established. In

the case of Res=200 (0.5*0.2) only 120 time steps are

required to achieve the same accuracy.

The results of the FA solution for the suddenly

expanded channel flow are plotted in Figs. (30) through

(33). The stream function and vorticity distribution for the

channel flow are shown in Figs. (30) and (31). Figure (30)

gives the contours of the stream function for Res=200 and Re s

=%00 at an increment of AS=0.1. It appears that the

recirculation zone exists at the entrance corner and the re-
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attachment point is shifted to downstream as the Reynolds

number (Res) increases from 200 to 400. From Figs. (30a) and

(30b), one finds that the recirculation zone developed at

Re=200 is almost same for two different grid sizes (0.5*0.2

_nd 0.2*0.2) used in computing the same flow. The flow

enters the channel with a maximum velocity of i at the

inlet. Because separation occurs at the lower left corner,

the flow near the center line of the channel is thus

accelerated. Here the maximum velocity behind the inlet is

likely to be larger than the maximum velocity of 1 at the

entrance region. When the flow goes downstream the

streamlines gradually expand, thereby decelerating the flow

and increasing the pressure near the upper wall. This

increase of pressure produces an adverse pressure gradient (

dP/dx) which tends to reduce the momentum of the flow. When

the re-attachment occurs at the lower wall, there is a

tendency for the streamlines near the upper wall to diverge

which is indicated by the distribution of zero vorticity in

Fig. (31). However, no evidence for actual separation is

obtained. Deham and Patrick [291 also particularly noted

this phenomenon in their experimental raeasurments by the

inflection in the velocity profiles at the upper wall.

The velocity profiles u(x,y) for Res=200 at x=O, I, 2,

3, _, 5 and 16 are given in Fig. (32). The tendency of

separation at the upper wall is detected from the velocity
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profiles at stations x=4 and 5 where the re-attmchment point

occurred. Furthermore, it is observed that the maximum

velocity at the stations x=O through x=5 shifts downward

gradually as the flow goes downstream. Beyond the station

x=5, the maximum velocity of the flow gradually shifts back

to the center (y=l.O) to meet the fully developed condition

at the outlet. This observation of the maximum velocity

shifting down and then up is not found in the investigation

of channel flow with a backward facing step shown in Section

VI-4 in which the maximum velocity just gradually goes down

to meet the outlet boundary condition. This difference

probably is due to the different expansion ratios and the

inlet velocity profiles considered.

The pressure distribution for Re =200 using equal grid
s

size 0.2*0.2 is shown in Fig. (33). In the region of

recirculation, a constant core is formed with a value of

-0.23, if the center of the outlet station is chosen as the

reference point with a value of zero. Further downstream,

the pressure in the recirculation zone increases to 0 near

the re-attachment point. At the lower wail, the

concentration of the isobars around the re-attachment point

indicates that a large pressure gradient occurs. At the

upper wall, an interesting phenomenon is observed. Between

station x=2 and x=8, the pressure gradually increases due to

the diverging nature of the stream lines. The adverse
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pressure gradient thus creates a tendency toward separation

at the upper wall. This observation has already been shown

in the distribution of vorticity of Fig. (31) and in the

velocity profile of Fig. (32). Beyond x=13, the pressure

distribution becomes almost uniform, This is expected from

a Polseuille flow assumed. Therefore, the assumption of

uniform pressure at the outlet station (x=16) is a

r_asonable boundary condition for this problem.

6.6 Conclusion

The FA method is used to solve for the flow over a

backward facinq step and its special case of a suddenly

expanded channel flow. The FA solutions of the channel flow

over a step predict the recirculatlon zone lellgths and the

recirculated mass flow rates for IReynolds numbers of 25, 50,

73, 125, 191 and 22g which correlate well with experimental

measurements. The <]erleral flow fleld bears similarity o[ tile

r.ci:-culation reclion flOWS ok'or tile range of the Reynolds

, numbers considered. In the special case of tile suddenly

expanded ,-hann,_l flow, the FA solutlons at Re --200 and 400
s

show tile separation tendency at tile upper wall. Thls

tendency is observed from tile distribution of vortlclty alld

velocity pro' ",,s and distribution of Isobars which Is in

aareement with xperimental observations.
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CHAPTER VII

FLOW PAST A SINGLE AIRFOIL

7.1 General Remarks

In Chapters V and VI. the FA solution is derived in the

Cartesian coordinate system and applied to obtain the

numerical solution for viscous flow and heat transfer

problems. Both equal and unequal grid sizes are considered.

In the following two chapters, the FA method with the

boundary-fitted coordinates is employed to solve the

problems involving the complex boundaries. In this chapter

the potential flow past a single airfoil is studied and the

numerical prediction of viscous flow and heat transfer in

tube bundles is presented in Chapter VIII.

As the first application of the FA method with the

boundary-fitted coordinates, the incompressible inviscid

irrotational flow is solved numerically. There are several

reasons for this choice. First, the FA solution is of

interest in itself as it provides another potential flow

method for airfoil sections. Secondly, the applicability of

the FA method using the boundary-fitted coordinate system

can be verified since the FA solution can be compared with

the theoretical potential solution. Finally, the invicid
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potential flow is governed by Laplace equation which appears

in many engineering fields. Thus, :i.f we can demonstrate the

ability of the FA method in solving this equation for

complex boundaries, the FA solutior may be readily extended

to other engineering problems.

In the first study of the FA method incorporated with

boundary-fitted coordinate system, two airfoils, the

symmetric NACA-0018 and the Karma_n-Trefftz airfoil, are

examined. These two airfoil sections are plotted in Fig.

(6a) and (6b) and the corresponciing boundary-fitted

coordinates (r ,-) are shown in Figs (7 8)

7.2

The two 3imensional irrotational flow in the

dimensionless stream fun_tion formulation is

V2_ ' = _"_ + _, 3' = 0 . (7-1)

As indi_ated in chapter IV, the first step to solve the

problem i_volved complex boundaries is to transform the

gove;ning equation (7-1) into the transformed plane (£ ,T]).

Us_.ng the transformation relations (from A-I to A-8) derived

_n Appendix A, the Laplace equation becomes

_x_.. - 2l'_'__. + _q"'l" + _' + __': = 0 (7-2)',,', ,'.'_ , '1 ,.
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The transformed coefficients a,B ,y ,o , and T defined in

equations (4-8) and (4-9) are functions cf the transformed

coordinate variables and may be calculated and stored one

for all as this coordinate system is generated. It is

recalled that if the non-contracting transformed coordinate

system is employed, the quantities _ and T vanish which

reduces equation (7-2) to

a_ - 2B,_{n + _nn = 0 (7-3)

The boundary conditions (see Fig. (2)) for a uniform

flow passing an airfoil for either equation (7-2) or

equation (7-3) are given as below :

_(_'_l ) = _0 = constant

_(_,_2 ) = f(_,_2 )

_(_1,_) = _(_2,_)

in (_,41)EF I'

in (_,_2)6F 2,

in (_i '_) E r,, 3

or (_2'n)_r
4

(7-4)

Here f(_,n2) is a prescribed function for the outer boundary

of the computational field shown in Fig. (2). _land R 2 are

the values of the coordinate 4 on the boundary contours F 1

and F 2. F3and F 4 are the transformed re-entrant boundaries.

Since the equation (7-3) Js linear in _, the problem

can be decomposed into three simple problem each with their

own boundary conditions. The three problems are
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I. A zero circulation solution at zero degree angle of

attack, denoted _i(_,_), and the boundary conditions

are

,

in (c,n2) e r_
(7-5)

o A zero circulation solution at 90 degrees of angle of

attack, denoted _2(_,_), and the boundary conditions

are

_2(_,n 1) =o m (_,nge r[ ,

_,2(_,q2) = U0 x(_,r!2) in (_,n 2) ,_r_

(7-6)

o A solution with circulation without free stream

velocity, denoted _3(_,q), and the boundary

conditions are

(7-7)

where U 0 is the dimensionless free stream velocity.

":_ _, 3After these three solutions i '_" and are obtained the
I I

total solution of equation (7-3) can be given by superposing

these three solutions. The flnal result is
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_ (_,_) = cosa _,l(_,rl) -_ sine _2(_,_)

(7-8)
+_ _3 (_ ,_)

Here a is the angle of attack and u is a constant or a

circulation strength which is to be determined by satisfying

the Kutta condition. Because the periodic boundary

condition is applied to the re-entrant boundaries of F3 and F 4

shown in Fig. (2), it is expected that the solution of

equation (7-2) is determined uniquely.

7.3 Im_m_lementation Of Kutta Condition

As discussed above, after obtaing the solutions,_ 1 ,

and ¢3 the constant _i may be determined so that the Kutta

condition is satisfied. The Kutta condition originated from

the physical necessity that required the flow to leave the

trailing edge of an airfoil in a smooth fashion.

Mathematically, the smoothness condition implies that the

velocity on the surface of the airfoil is continuous. Thus,

if the trailing edge angle is finite as shown in Fig. (32),

the velocity at the tip of the trailing edge must be zero.

Otherwise this discontinuity will occur at the edge. On the

other hand, if the cusped trailing edge is considered, at

such an edge the velocity need not be ze_ _ but of finite

magnitude. However, from the view polnt of numerical

calculation, one finds that no matter how the trailing edge

is, the stipulation of the same velocity magnitude at the
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edge on either side is sufficient to meet the requirement of

the Kutta condition. This interpretation of the Kutta

condition has been applied in the studies of Giesing [33]

and Thompson et al. [12].

Because the airfoil is considered to have the

impermeable solid surface, the normal velocity component on

the airfoil surface vanishes. Thus in deriving the Kutta

condition only the tangential velocity along the surface is

examined. If the velocity in the physical plane is denoted

as

v = u i + v j

then using equation (A-21), the tangential velocity in terms

of the transformed coordinates (<,n) along a constant q-line

is expressed as

-2

I 1 (7-9)vt, = t, _ =(x_u• +y_v) F

"I

where tl_ I is the unit vector tangent to a constant r1-1ine.

From the definition of the stream line in equation (4-2), u

and _ in equation (7-9) can be replaced by ,r_jyand -_'x,

respectively. These derivatives of stream function in

coordinates (x,y) can be transformed into the coordinates (

:,.)by the Jacobian given in equation (A-8). Substituting the

above results into equation (7-9), one has
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1
I (_' - l;_ ) (7-10)vt - JiT "

If this tangentzal velocity is evaluated at an airfoil

surface ('l=T_=l), the component _. is eliminated. Thus the

tangential velocity along the airfoil ls

vt(,:,l) = j _ (",I) (7-11)

For luther slmplzcity, the derivatlve _',i in equatlon (7-11)

can be approximated by a second order _orward difference

formulation. The final expression of the tangential

velocity along an airfoil becomes

i) = /_i' [-3_,(.: i) + 4_ (,: 2) - _'(,:.,3)Ivt (,:. (7.-12)
0 _.T L i # IJ

In order to obtain the explict expression for the

constant ;_, equatlon (7-8) is substituted into equatlon

(7-12). After rearrangement, equation (7-12) becomes

_t (," 1) _-_' (_. 1) , _ (_. t)' 12 ' 13 '
(7-13)

where

'r12(_., 1) = 4/i[cos,_,_!(:J ,2) + sin,, 2(. ,2)

-cos,, _I(:,3) + sin,_ _2(:.,3)]

V_,_[ ' 'I_ 3(:.,1) • -3 + 4_; 1, 2) - 4_ 3(. 3
_J 0 P •

0

(7-14)
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It is noted that the boundary conditions in equations

(7-5), (7-6) and (7-7), _i(_, tll)=_2(_, ql) and _3(C,ql) = 1

have been applied in the above manipulation. In evaluating

the tangential velocities at the edge point on the both

sides of the airfoil, the quadratic extrapolation is

employed in this study. For example, on the upper surface,

the extrapolated function is assumed to be

u a_2
vt(<,l) = + b_ + c , (7-15a)

with three conditions

u

vt(_,l) = vt(l,l) at < = 1 ,

u

vt(: ,i) = vt(2,l) at _ = 2 , (7-15b)

u

vt(r,l) = vt(3,1) at : = 3

This extrapolation is illustrated in Fig. (34). A similar

extrapolated function can be obtained for the lower surface

according to the equation (7-15).

Consequently, the extrapolated tangential velocity at

the edge point on upper side and lower side as shown in Fig.

(I) are

.u

,t(0,1) = 3vt(l,l ) -3vt(2,1) +vt(3,1) , (7-16a)

I*

v t (0, i) = 3v t (-i , I) -3v t (-2 , i) + v t (-3 ,i) (7-16b)
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Here the locations (_,1) for C=O, 1, 2, 3, -1, -2 and -3 are

shown in Fig. (34) and the value of vt(_,l ) can be

calculated from equation (7-13). Therefore, numerically the

Kutta condition implies that

u L
vt(0,1 ) = vt(0,1 ) , (7-17)

b
I

From equations (7-14), (7-16) and (7-17), the expression to

the constant _ is obtained as

u _ _L
Y]2 12

= - , (7-18)
u L

73 - _3

where

u
YI2 = 3_12(i'i) - 3_12 (2'I) + _12 (3'I)

u
_3 = 3T3(I'I) - 3_3(2'i) + _3 (3'I)

_2 = 3_12 (-I'I) - 3T 12(-2,1) + Y 12(-3,1)

L

712 = 3Y3(-I'I) - 3'_3(-2'i) + Y3 (-3'I)

(7-19)

which _I2(K,I) and _3'_ ,i) for C = I, 2, 3, -i, -2 and -3

can be calculated from ecD1ation (7-14). It is remarked that

if the denominator of equation (7-18) vanishes, the

u L
numerator TI2" _12 must vanish, too. Thus, the constant u is

set to zero. This situation may occur in the nonlifting

airfoil, for example, the symmetry airfoil NACA-O018 at zero

angle of attack.
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7.4 FA Numerica.l .._Solution

The numerical solution of equation (7-2) is obtained by

the FA method. In this potential flow problem, the FA

algebraic equation of the stream function evaluated at the

center point P of an element is exactly the same as equation

(4-33) except that the vorticity ,_ vanishes. It is

8
\ ! ,t

I_ Cn _ n ' (7-20)
n _ i

!

where C n are the FA coefficients surrounding the center

node, which can be calculated [rom equation (4-22). For the

computational tleld api_ear-n q In Fig. (2) the system of

algebraic equation can be expressed as

8

"P ' " 11
n:-i

(:. ," ) , (7-21)

for all : _:-f and., _.,<,
t 2 I 2

In this invest_gatxon, the llr_e-by-llne Impllcit

itetation method Is employ,_d to, solve the system of the

algebraic eqt, at fen (",-"l). "l'h¢, ,'rltertou of convergence ls

that the ma×Imum dtlteren<,e of the stream func'txon for all

-5
the point in the comput,ttutonal fxeld ts 1",:. ] "i0

l n%%X !

between two :terations. The computer program for solving

this potential problem xs listed xn Appendix C-I.



ORIGINAL PA_E tg

OF POOR QUAL:T":
98

7.5 Numerical Results And Discussion

The numerical solutions of the uniform flow passing the

NACA-0018 and the Karmann-Treftz alrfoils at three different

angles of attack, 0, 5 and i0, are presented. The stream

function contours for these two airfoil sections are shown

in Fig. (35) and (36). It is shown that the Kutta condition

is satisfied so that the divided stream line smoothly leaves

the trailing edge.

The pressure cofficient Cp is an important parameter in

the potential flow, which may be obtained at any point in

the field by application of Bernoulli equation. It is

2 2

Cp = Ap/(0.5 r U 0 ) = l-(u/U 0 )

For the case of the symmetric NACA-0018 airfoil at zero

angle attack, the calculated distribution of (u/_ _ (or 1-%

) along the airfoil surface is compared with the

experimental results from 1341. In Fig. (37), it is shown

that the FA results is in agreement with the experimental

measurements (at average Re}noldr, number of 3,100,000) near

the leading edge, while a slight difference exists near the

trailing edge. This is because the thickness of the trailing

edge of the experimental model is not zero but with a

definite thickness of 0.189 percent of the chord length.

In thls study, the lifting coefficlent is another

Important parameter and the dlscussion is given below. The
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lifting coefficient for the two-dimensional flow, C L, is

defined as

99
:i

CL = _L/(0"5 p _0 L) ,

where L is the characteristic length and FL is lifting

force. Utilizing the Kutta-Joukowski theorem, FL = p _F,

one obtains the simple relationship between C L and the

circulation F, or

C L = 2F/U 0 L.

The computer program for calculating the circulation around

an airfoil is given in Appendix C-2. The results of lifting

coefficients for both the NACA-0018 and the Karmann-Trefftz

airfoils at different angles of attack considered are

exhibited in Fig. (38). The lifting coefficients are

linearly related to the angles of attack over the range

considered. Due to the effect of the camber, the C L of the

Karmann-Trefftz airfoil is larger than that of NACA-O018 for

the angles of attack considered. This trend is shown in Fig.

(38). It is noted that all of the values of the C L lie

above the theoretical value for thin wings, 2 " per radian.

This result is in accordance with the thin wings theory that

C tends to increase with Increaslng thlckness of an
L

airfoil.
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In this potential problem with arbitrary boundaries,

the FA method with the boundary-fitted coordinate system is

employed to solve the Laplace equation. The numerical

solutions calculated are in good agreement with those of

theoretical and experimental results. Hence, in the next

chapter, the FA method with the boundary-fitted coordinate

system is extended to solve the viscous flow and heat

transfer problem involving complex boundaries.
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CHAPTER VIII

HEAT TRANSFER PROBLEM OF TUBE BUNDLES

8.1 General Remarks

In this chapter convective heat transfer for two-

dimensional incompressible flow past tube bundles is

investigated. The study of heat transfer in tube bundles has

attracted great interest in the past mainly because of the

importance of the flow configuration in the design of heat

exchangers [35,36,37]. In addition, when the tubes are

densely compact, the problem can serve as a basic model of

the flow through a porous medium [38]. Because of the

difficulty in making theoretical or numerical predictions of

flow and heat transfer in this complex geometry, previous

studies of the problem are mostly experimental [35,39], that

is, building a scale model of the tube bundles under

consideration. In general, experiments are carried out in a

tunnel 1351. Hot fluid is blown over the tubes in which

cooling fluid is circulated so that measurements can be

made. The empirical correlations thus are obtained for

variation of flow patterns, relating heat transfer

coefficients and pressure losses with the Reynolds number

and the geometry. Details of work are given by Zukauskas
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139}. However, experimental approaches not only cost money

but also consume time, since for each new geometry

considered a new model must be constructed An alternative

approach is computer slmulatlon by solving the partial

differential equation numerically. To date, for a typical

two-dlmensional laminar recirculating flow problem with

reasonably simple and cor_fined boundaries, the prediction of

heat transfer and flow patterI_s can be obtained in about

twenty minutes computattonnl time on a PRIME 750 computer.

Therefore, the cost of such an exploratlon is usually a

small fractlon of the cos_ of a experiment. The

comprehenslve acc(.;unt of numerical studies up to 1978 is

reviewed in I_01. Howe\'er, an obstacle to the use of.

numerical methods in this problem of tube bundles is the

irregular boundaries. In order to make the problem more

tractable , numerical handlinq of the irregular geometries

must be first addressed. Several possible cholces of grid

systems in finite difference studies of tube bundles have

been carried out. They are brlefly described below.

1. Them and Apelt 14] I employed the conforma[ mapping

technique to tra_sform the boundarles of the

staggered tubes such that they coincide with equi-

valued surfaces of one of the independent variables,

as shown in Fiq. (39a). This coordlnate

transformation that maps the lrre_ular curved surface

.................. _.am._ _
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onto coordinate lines is excellent since it produces

a low density of grid lines near the surface

precisely where on accurate numerical solution

demands a fine grid.

In another numerical work, Le Feuvre [42] adopted a

Cartesian grid in which the spacing between nodes is

adjusted so that all the near-wall nodes fall on the

in-line surfaces of tubes, as indicated in Fig.

(39b). This grid was also adopted earlier by Thoman

and Szewczyk [43] to study the flow past a single

tube. This grid coordinate is far from ideal since

it produces high densities of nodes in regions

outside the wall where they are not needed. Le Feuvre

also found that the numerical solution obtained on

this coordinate system was particularly susceptible

to numerical diffusion because of the streamline near

the tube cutting diagonally across the grid.

Launder and Massey {401 used two coordinate systems

as illustrated in Fig (39c). The cylindrical grid

system is used near the tube while the Cartesian grid

is filled in the remainlng reglon between the tubes.

The idea of adopting two coordinates systems comes

from the fact that close to each tube the steepest

gradients of flow properties are in the radial

direction. However at the overlapped region between
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the cylindrical and Cartesian grids, a false row of

nodes is introduced to provide a connection between

the Cartesian and polar regions. The disadvantage of

this two coordinates systems is that the cylindrical

coordinate system cannot be applied for non-circular

t.ubes.

In the present study, the boundary-fitted coordinate

system described in Chapter III is employed to generate a

curvilinear coordinate system (_,q). The transformed

coordinate system for the problem of staggered tube bundles

is developed in Chapter III and is plotted in Fig. (5c). For

completeness, the boundary-fitted cu[vilinear coordinate

system that is on the physical plane is given in Fig. (40).

It is observed that not only the boundaries of tubes are

mapped onto constant n-lines, but also the q-lines become

dense near the tube boundaries. Thus, in the following

study, the boundary-fitted coordinate system illustrated in

Fig. (40) or (41) is adopted. After the governing equations

for the stream function, vorticity and temperature function

are transformed into (_,TI) coordinates and the corresponding

initial and boundary conditions are introduced, the FA

solutions can be obtained. The FA numerical procedures are

dicussed below.
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8.2 Governing Equation

In the present study the atttenis forcused on fully-

developed region of flow in tube bundles, i.e., the

situation where the flow pattern is exactly repeated from

one row to the next. The configuration for tube bundles

chosen is illustrated in Fig. (40), which _as used in the

works of Thom and Apelt [41] and Launder and Massey [40].

The reason for choosing this geometry is to redu&_ the

difficulty in making comparisons.

The stream function-vorticity formulation of the two-

dimensional incompressible viscous flow equations in

dimensionless form is

Re ( et + _y_x - Cxey ) = _xx + eyy

_xx + _yy = -e '

and the energy equation is

(8-1)

(8-2)

Pe ( @t + _y@x-_x@y ) = @xx + @yy " (8-3)

where ¢ , e and @ are dimensionless and are the stream

function , vorticity and temperature, respectively, which

are normalized by U L , U /L and (Tw-T0). Re is ther r r r

Reynolds number U Lr/u and the Peclet number is Pe = Pr Rer

Here U r and L r are taken to be unit characteristic velocity

and length respectively. The reference temperature is taken
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_o be the difference between the constant inlet temperature

of fluid T 0 and the isothermal temperature on the tube Tw-

Since the dimensionless governing equations (8-1)

through (8-3) are given in the physical plane with the

Cartesian coordinates (x,y), these equations must be

transformed and expressed in boundary-fitted coordinates (_,q

) as illustrated in Figs. (40) or (41). Ultilizing the

operators given in from Appendix (A-I to A-18), the

transformed governing equations are

j2Re J Re T -J Re

_t + ( _ )_ + ( _ -

j2pe _t + ( J Pe #TI _ )O + ( -J Re

-- E) I (8-6)

where _, _ , Re and Pe are as defined above and the

coefficients of coordinates transformatlon _, _ ,Y , J, 0 and_

are introduced in equations (4-8) and (4-9), respectively.

It is noted that since the boundary-fitted coordinate system

is stationary and independent of time in this study, the

coefficients of coordinate transformation defined above are

fixed and can be calculated once and for all.
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8.3 Initial And Boundary Conditions

With reference to Fig. (40a), the initial and boundary

conditions for the governing equations (8-1) and (8-2) for

the stream function and vorticity in the physical plane

(x,y) are given below.

w

At t>0, on the contour F1 of upper boundary BC (symmetry

line)

(0(x,y,t) = 0 ,

(x,y,t) = 4

On the contour F4 of the lower boundary EF (symmetry line)

_ (X,y,t) = 0 ,

_i'(x,y,t) = 0

Along the upper boundary contour F2 of the tube

<_(×,y,t) = _ (x,y,t) ,
u

_, (x,y,t) = 4 ,

,_;, (×,y,t)_£ = 0

Along the lower boundary contour r
5

(×,y,t) = _ (x,y,t) ,
L

% (x,y,t) = 0 ,

7¢ (x,y,t)/_ = 0

of the tube AF
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And at t=0 the initial conditions for fluid is taken to be

rest

_, (x,y,t) = 0

(x,y,t) = 0

In equations (8-7c) and (8-7d) n denotes the unit vector

which ls normal to the boundaries at all points. The

vorticity boundary functions on the tubes ¢=_u(X,y,t) and_ L

(x,y,t) are unknown and must be calculated as parts of the

governing equations (8-1) and (8-2). Therefore, two

alternate but natural boundary conditions (impermeable

condition) are Given in equation (8-7c) and (8-7d). To

complete the specification of the boundary conditions one

must specify the conditions on boundaries AB and DE.

Because the fully developed flow is considered in this

study, the flow pattern is expected to repeat from a row to

the next. Therefore, the re-entrant (or vertical) boundary

conditions at the inlet (contour AB or[' 6 ) and the outlet

(contour DE or ['3) stations are treated as periodic. This

implies that the values of the dependent variables along AB

are identical with those along DE. Specially referring to

Fig. (40a), with distances EH=BG and HD=GA one may set

7

also
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(8-8b)

where from equation (8-7a) one has

_'B-C-D = 4 , _, = 0A-F-E ' _G = _H " (8-8c)

In computations, the values of the dependent variables

are taken from the outlet boundary (contour F3) and placed

on the inlet boundary (contour F6) as described in equation

(8-8) to serve as boundary conditions during the next cycle

of the iteratrion.

In the case of the temperature, the scheme described

above is modified to account for the fact that due to the

heat transfer from tubes, the inlet and outlet temperatures

are not the same. Hence, in the computation of the

temperature distribution, the computational field Fig. (40a)

is extended twice that of the flow calculation as shown in

Fig. (41a). With reference to Fig. (41a), the initial and

boundary conditions of temperature in the energy equation

(8-3) are as follows.

At t>O, along the inlet boundary AB, tube boundaries

(unheated tubes) AH and FG (i.e., contours F

_ (x,y,t) = O

8 '['7 and I'5 )

(8-9a)

On the contour I"2 of tube boundary CD (heated tube)
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On the symmetry planes BC and DE (i.e., contours

0(x,y,t)/a_ = O

On the contour F4 of the outlet boundary EF

ii0

(8-9b)

r3 )

(8-9c)

8 (x,y,t) = 8e = constant (8-9d)

m

For the contour F6 along GH it is assumed no or negligible

heat flux passing through the boundary or

(x,y,t)/gh = O (8-9e)

At t=O, the initial condition is

0 (x,y,O) = O , (8-9f)

where e taken as a constant equal to the averaged
e

temperatue at the outlet boundary EF. This constant

temperature 0 may be obtained by making an energy balance
e

over the computational domain. This will be discussed in

detail later.

Physically, the initial and boundary conditions

specified for the temperature simulate a heat exchanger with

staggered tube bundles where one particular tube is heated

while the others are unheated. When the problem is solved

it may reveal the difference of the heat transfer
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coefficient between a single tube in a uniform flow and that

in a flow past staggered tube Dundles.

Since the governing equations (8-4) through (8-6) are

given on the t_ansformed plane (_,_), the initial and

boundary conditions of equations (8-7) through (8-9) have to

be transformed into the same plane. As shown in Fig. (40b),

this coordinate transformation for the stream function _ and

vorticity _ yields the relations as follows.

At t>0

(6 ,JMAX, t) = 0 in [_ JMAX} 6 F

<D(_ ,JMAX, t) = e (_,JMAX,t), zn IC JMAX] 6 F
u

m(£,l,t) = 0

(_,l,t) = eL(_,l,t)

(_ ,JMAX,t) = 4

(_ ,l,t) = o

3_ (6 ,JMAX, t)/_n = 0

3_ (_ ,l,t)/_ n = 0

zn [_ I]6F 4 ,

zn 1;. 11 6_r ,
5

an [_ JMAX] 6 F

1 '

2'

(8-10a)

1 or F 2,

in [_ i] _ F4 or F 5,

* (8-10b)
In [_ JMAX] _ F2,

In [£ i] 6 F ,
5

and at t=0, the initial condition is

(8-i0c)

The initial and boundary conditions in equation (8-9)

for temperature illustrated in Fig. (41b) are transformed

and become
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At t>0

e(l,q,t) = 0

B(C,I,t) = 0

8(C,JMAX,t) = 1

2B (F_, Jmax, t)/3_ = 0

_e (C, l,t)/_ = o

0(IMAX,r],t) = e = const.,
e

zn [l,n ]6 F8 ,

in [_,i]6 F7

in [_,JMAX] _ F2 ,

, *
in [_ JMAX] e F 1

*

In [_ ,l]q F ,
6

in IIMAX,n ]6 F
2'

or iP3,

(8-11a)

and at t=0, the initail temperature cendition for the

computational field is

e(_, q,0)= 0 , (8-11b)

where IMAX and JMAX are the maximum node numbers on the _-

and n- coordinates in the transformed plane shown in the

Figs. (40b) and (41b), respectively.

It should be remarked that in the calculation of the

stream function-vorticity formulation in equations (8-_) and

(8-5), both the accurate determination of the unknows on

tube boundaries _u(_,JMAX,t) and _L(_,l,t), and the

satisfication of the no-slip condition on tubes as stated in

equation (8-10b) are very important. Although vorticity

function on the tubes are readily defined by equation (8-5)

when the stream function is solved from equation (8-5) and

the impermeable condition in equation (8-10a). During

numerical iterations, one should realize that th6 no-slip
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condition (8-10b) which is the alternative boundary

condition for vorticity is not satisfied. In order to

incorporate the no-slip condition (8-10b) in evaluation of

vorticity boundary conditions, some modification of equation

(8-5) on the boundaries _ and _ must be introduced. This
u L

modification is introduced in an attempt to insure that the

alternative vorticity condition or no-slip condition (8-10b)

is satisfied. A variety of numerical procedures

approximating the equation (8-5) and satisfying the no-slip

condition are documented in Ii]. Several approaches

suggested by Roache Ii] are tested in the present study.

Numerical results are found either inaccurate or even

divergent. The main reason is perhaps the assumption that

no-slip condition is automatically assumed for the solution

of the stream function during numerical iterations when it

is solved only to satisfy the impermeable condition. Israeli

1441 thus suggests that _u and _L be calculated with an

iterative algorithm including a correlation of the slip

velocity 3_/_,] on the wall which is obtained during the

iterative procedure as follow

k+'_

_"u (:i'JHAX' nt ) =
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Here _/_ is the no-slip velocity in the wall boundary.

denotes the _- position along the tube wall. JMAX is the D-

value for the tube, t n is the current time, k is the

iteration counter at time tnand y is an under-relaxation

factor (y=l in this study) for the slip v_iocity correction.

A similar expression like equation (8-12) may be obtained

for _L" The direction derivative _/_ of equation (8-12)

in boundary-fitted coordinates is given by equation (A-21),

in which the second-order forward difference is approximated

for the _- derivative and central difference for the _-

derivative. Obviously, the procedure of equation (8-12) is

written implicity in time which required iterations at each

time step. It is important to note that convergence of the

sequence [_#(£. ,JMAX, t )/_] to zero implies convergence of
1 n

and the satisfication of the no-slip condition. Equation

(8-12) is adopted in the present study.

Temperature boundary conditions are given in equation

(8-11) for the energy equation (8-6). Detail expression for

the temperature derivative _0/_n is given by equation

(A-21). The constant temperature @e of the outlet boundaryF 4

shown in Fig. (41a) is determined by balancing the energy in

the flow field and is

i

/ K _T ,I ds = / Cp( T - T O ) _u dy , (8-13)_n w e
F ['_
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where k is the conductivity and Cp is specific heat of the

fluid. If equation (8-13) is non-dimensionlized, the

isothermal temperatureSe=(Te-T0)/(Tw-T0) of the outlet

boundary of h becomes

e Pe Q , (8-14a)

where

Q = f u dy , (8-14b)
F_

= ; _---!-° ]' d_q (8-14c)_n vw
F2

where Pe is the Peclet number defined as before, and s is an

element of arc length along the tube wall. In equation

(8-13), Q is total mass flow rate across the outlet contourF 4

(Q=4 in this study), and q denotes the heat flux along the

contour F2 of the tube. This heat flux q can be calculated

from equation (8-14c) by any numerical integration method,

for example, the trapezoidal rule.

8.4 FA Solutions Of Tube Bundles

Problem

The governing equations (8-4) through (8-6) for the

flow and heat transfer in the tube bundles problem are for

the two-dimensional incompressible flow with constant

properties. Thus, the flow pattern is uncoupled from

temperature. The stream function and vorticity equations
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(8-4) and (8-5), can be solved first and then the

temperature distribution obtained from the energy equation

(8-6) afterward.

The FA method described in Chapter IV is employed to

obtain the numerical solution for this problem. The FA

algebraic equation for vorticity, stream fucction and

temperature in each element have already been cited

separately in equations (4-21), (4-33) and (_-36). They are

summaried below for completeness.

and

8

<_p = ._ C _ + Cp gp (8-14)
n=l n n

8

.d'p = Z C' -_n + 'n=l n Cp gp , (8-15)

where the FA coefficients C and C are calculated from
n P

equations (4-22) and (_-23), and the source term gpiS given

by equations (4-18) and (4-32), respectively. Temperature

equation can be similarly given as

8

= [i C ¢! + Cp
0p n=l n n gp , (8-16)

where C n and gp correspond to the FA coefficients and the

source term, are similar to equation (8-14) except that the
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Reynolds number is replaced by the Peclet number and

replaced by 8 . The iterative calculation procedure is

treated as a time marching method in the present study.

Details have already been discussed in Section (4-4-3). The

computer programs for calculating the stream function,

vorticity and temperature are given in Appendex C-5 and C-6.

8.5 Results And Discussion

In this section, the results of the FA solutions for

the flow past tube bundles are presented. In addition to the

stream function and vorticity distribution, the heat

transfer problem is also investigated. The comparison of

the FA solutions with experimental measurements and earlier

numerical predictions is made.

8.5.1 Conversion Of The

Reynolds Numbers

In different references, different characteristic

scales are used in defining the Reynolds number. Therefore,

in order to avoid confusion in comparing the present FA

solutions with those given in references, the Reynolds

numbers used in these references must be first converted

into that of the present study.

As mentioned before, the confzguration of tube bundles

chosen in this study is the same as that of Thom and Apelt

141] and shown in Fig. (40a). This staggered arrangement of
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tubes is defined by the transverse and longitudinal center

to center distances (or called transverse and longitudinal

pitches) which are 13.O8 and 8.9 respectively. Between two

symmetric planes BC and EF the mass flow rate is assigned as

( _B- _A ) = 4. There are several Reynolds numbers used in

previous investigations. In order to relate these different

Reynolds numbers, a reference Reynolds number is defined as

L U
r r

Re - , (8-17a)

where L and U are unit charac+eristic length and velocity.
r r

In case of Fig. (40a), the diameter of the tube D is

D = 5.34 L , fR-171.-,%
r

and both the mean velocity U across the line MN (the
m

largest fluid cress section) and the averaged inlet velocity

U i across A_ (the smallest fluid cross section) are found to

be

/YM _M- _N 4 U
[; _ 1 u dy = 6 54 = 6.54 r

YN
, (8-17c)

YB

U. = _ / u dy = 4 U (8-17d)

l I_I YA 3. S7 r
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Based on equation (8-16) and (8-17), the conversions of

the Reynolds number appearing in references are summarized

as follows.

i. Re defined in [41] by Thom and Apelt ism

U D U L
m 4 r r

n

Rem _ = ( 6 54 5.34 ) _ 3.26 Re .
" (8-18a)

2. Re i defined in [40] by Launder and Massey is

U. D U L
i 4 r r

Rei - '4 - ( 3.88 5.34 ) _ - 5.5 Re
(8-18b)

. Re c defined in [35,36,37] by Bergelin et al.

In series of experimental works by Bergelin et

al. [35,36,37], the Reynolds number is defined as Re
c

= GmDv/B where _ denotes mass velocity through

minimum cross section AB and D denotes the
v

volumetric hydraulic diameter, or

Gm = pUi and D v = 4r h ,

where p is the density and r h is the hydraulic radius

defined as cross-sectional area (i.e., rectangular

area 8.9*6.54 subtracted by one half circle area _ E

/8) divided by a wetted perimeter. The value of D

calculated for this configuration is 8.15 L r. This

gives
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(; D 4 LI I,
= m v _ ( 8 15) r r = 8.4 Re

Re c Ii 3.88 " '_' (8"18c)

,
R_ defined in the uniform flow passing a single tube

For the uniform flow passing a single tube with

an approaching velocity U, the Reynolds number is

commonly defined as Re| = UP/x,. If the velocity U is

set equal to the mean velocity U across MN, then the
m

Reynolds number R_ becomes

[I D
11 l_ m - RL" = 3.2(_ Re . (8-18d)

1_ | \' \, !U

which is the same as Re shown in case I.
m

With these relationships and classification of various

Reynolds numbers defined in previous works, the Reynold

number Re = UmD/\, is used in the following discussion. It
xll

should be remarked that the computer program presented in

Appendix C-5 is for dLmensionless formulation with unit

velo(:ity Ur, unit length L,. and Re = _.Lr/\,. The reason for

this choice is to make the program flexible to adopt

different tube dlameters or/and longitudinal and transverse

pitches.
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8.5.2 Stream Function And

Vorticity Distribution

The stream function and vorticity distributions of the

two-dimensional incompressible flow past the staggered tube

bundles are plotted in Figs. (42,43). Fig. (42) gives the

contours of the stream function for Re m = 16, 98, 160 and

320 at an interval increment of A_ =0.5. It is seen that

variation of the flow pattern arround a tube is a strong

function of the Reynolds number. It is symmetric with

respect to the horizontal axis and periodic from a row to

the next or from a column to another. Therefore, the

unsteady vortex shedding phenomena behind a tube is not

considered in this study.

For a small Reynolds number of 16, Fig. (42a) shows

that the stream approaches the front of a tube like a

stagnation point flow, and then is deflected side ways

around the tube to the downstream. Although no eddies or

separation is found, the streamlines tend to move away from

the rear of the tube. This implies that the flow is

decelerated and the boundary layer becomes thick. For larger

Reynolds numbers of 98, 160 and 320, there are two attached

eddies behind each tube shown in Figs. (42b, c,d). These

eddies grow larger with increasing Re m. As illustrated in

Fig. (42d) at Re =320, the front part of the tube is
m

enclosed by the elongated eddy induced by the tube ahead of
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the tube. There are no experimental mesurements of

separation eddies known for the present geometry in laminar

flow. However, Zukauskas [39] observed in turbulent flow

that the elongated flow separation reattaching at the latter

tube is possible under an appropriate longitudinal pitch

between the tubes at a large Reynolds number of 3200.

Observing Fig. (42d), one may realize that when elongated

eddies are filled between tubes, the remaining flow passes

the tube banks as if it flows through a curved channel of

periodically convergent and divergent cross sections.

Contours of constant vorticity are shown in Fig. (43).

The concentration of the vorticity is seen to persist for a

long distance downstream at large Reynolds numbers. Another

feature exhibited in Fig. (43) is the existence of the flow

zone in the rear part of a tube where the vorticity changes

sign. Further detail of changing sign of the vorticity in

the separation zones is discussed in 145]. Fig. (43) also

shows that at the low Reynolds number Re =16, the boundary
m

layer begins to develop near the front part of the tube so

that the vorticity concentration is essentially confined

there. When the Reynolds number is greater than 50, the

contours of constant vorticity begin to swing downstream,

while the separation zone behind the tube lengthens. The

streamlines of the through-flow that passes among the

staggered tubes begin to look like an wavy 'S' shape. At an
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even larger Reynolds number of 98, Fig. (43) shows that the

strong vorticity generated along the front part of a tube is

mostly confined to a thin boundary layer. The vorticity

behlnd the tube begins to diffuse away due to the flow

separation as shown in Figs. (43b,c). For the flow of Re
m

--320 shown in Fig. (43d), the eddy regions behind a tube are

so elongated as to touch and enclose the front part of the

downstream tube. As a result, a constant vortlcity core

seems to be formed. A comparislon is made with an earlier

prediction% by Thorn and Apelt 141] for flows past the same

sta_gerod tube banks shown In Fiq. (44) at Re --50. The
• - m

distributlon of the stream functAon predlcted by the present

study (solid line) shows excellent agreement with the

results of Thom and Apelt dotted lines. Thls comparison

Impl,es that for this case of Re :50 the FA method with the
N%

nonorthogonal boundary-fitted coordinate systems is as good

as the orthogonal coordinate systems qenerated by the

conformal mapping technlque. Launder and Massey 1401 also,

predlc',ed thls flow fleld for Thorn and Apelt's ._eometry ,_t

Reynolds number Re -50. In 1401, Launder and Massey compat'ed
n%

thelr result at 14ei -:'/5 (Hem:45.5) wlth that of Thorn and

Ape_lt at Re _50 and indlcated a slgniflcant dl_te_'ence
n%

between the two. However, according to the cor_version

derived in _quatlons (8-18a,b), Rem:50 of Thom and Apelt Is

eq_t_valent to Rei_:84 and not 75. It is the error in
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I

_

D

=_
m

i-1

converting different definitions of the Reynolds number that

led to the incompatible comparison and the criticism by

Launder and Massey of Thom and Apelt's results. Fig. (45)

compares the predictions of Launder and Massey [40] (in

dotted lines) and the present study (in solid lines) at Re
m

=44.7 (R_=75). The discrepancy between the two results

probably is because of the Launder and Massey's linear

interpolation scheme in the overlapped regions between the

polar coordinate and the Cartesian coordinate systems where

coordinate lines are not smooth and continuous.

Fig. (46) illustrates the relationship between the

length of the eddy and the Reynolds number for the single

tube and the staggered banks. It is observed that the

blocked effect of the staggered bank has substantially

suppressed the initial formulation of eddies behind the

tube. In this study, the eddies still do not appear at R_

=16, while for the single tube, the eddies appear around R_

=5. From Fig. (46), one may interpolate from the present

prediction that the eddies may be elongated and touch the

downstream tube at around Re =310.
m

From experimental study 1361, Berge[in et al. indicated

that the transition from laminar to turbulent flow for in-

line tube banks is shown to be in the range of Reynolds

number Re of 7 to 18. Launder and Massey [40] also
m

reported that the transition regime for tube banks
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frequently begins at Reynolds number Re below 18. However,
m

it is noted that even at the transitional Reynolds number,

the flow in tube banks is still predominantly laminar with

large scale eddies in the recirculation regions.

Furthermore. the disturbances created from the flow over a

tube may tend to be eliminated by viscous forces and

acceleration of flow around the downstream tube maintaining

the laminar flow in the boundary layer. Thus, Zukauskas 139]

suggested that the flow be predominantly laminar pattern at

Re <1000. According to this description, one may conclude
m

that the critical Reynolds number for the geometric

configuration studied in Fig. (_0) is Re <310. Beyond
m

Reynolds number 310, the higher degree of disturbance may

exist in the eddies and the flow is no longer predominantly

laminar.

8.5.3 Distribution Of

Temperature And Heat Transfer

The temperature distribution and heat transfer around a

tube in staggered tube banks are obtained by using the FA

method with boundary-fitted coordinate systems also. These

results are plotted in Figs. (47,48,49). In this

investigation, fluids with Prandtl numbers of 0.I, 1 and I0

are considered for three Reynolds numbers 16, 160 and 320.

This combination gives the range of the Peclet number (Pe=R_

Pr) from 1.6 to 3200. The configuration used for computation
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of the temperature field is shown in Fig. (41). The

isothermal lines for Pe=l.6 to 3200 at a temperature

increment of Ae=0.1 are shown in Figs.(47-49). In Fig. (47)

it is observed that the isothermal lines for three Prandtl

numbers 0.I, 1 and I0 are quite different even though the

velocity field at Rem=16 is identical. In the case of Pr=10

which implies that the thermal diffusion is ten times

smaller than the momentum diffusion, the heat is readily

convected along with the fluid, as shown in Fig. (47).

However, in the other case of Pr=O.l, the thermal diffusion

effect becomes significantly large, ten times larger than

the viscous diffusion. Thus the isothermal lines around the

tube do not seem to be distorted by the fluid convection. In

Fig. (47), it is also observed that the thermal boundary

layer is gradually developing from Pr=O.l to i0, where the

fluid absorbs heat from the front part of the tube and then

convects it to the downstream within the thermal boundary

layer. For a larger Reynolds number Rem=160, Fig. (48)

shows that the thermal diffusion effect is not so dominant

even for Pr=0.1. It is seen that there is a similar trend

for the flow at Re =160 with Pr=0.1 and Pr=l shown in Fig.
m

(48) and the flow at Re =16 with Pr=l and Pr=lO shown in
m

Fig. (47). This is because the Peclet number and the

thermal boundary conditions are the same in the energy

equation (8-6) except the velocity field.
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At larger Reynolds numbers Re =160 or 320, three
m

stagnation points on a tube can be identified which are

denoted by A, B and C shown in Figs. (47,48). The stagnation

points A and C are inward stagnation points to where the

fluid rushes, while the point B is the outward stagnation

point where the fluid departs. Due to the curve boundary

between two stagnation points, the flow velocity is

accelerated and then decelerated. This results in

convergence and divergence of the isotherms between A and B

or B and C around the tube as shown in Figs. (48,49). The

influence of separation zones on the temperature

distribution behind the tube can be readily realized by the

isothermal contours. Figs. (48,49) show this influence for

the cases of Rem=160 and 320.

From Figs. (47-49), it can be seen that the assumption

of constant outlet temperature distorts the temperature

field near the outlet region. However, this distortion is

only confined to the last two_ -coordinate lines near the

outlet boundary. Therefore, it is believed that the choice

of these thermal boundary conditions in equatlon (8-11) wlll

not affect the temperature distribution around the tube.

In the heat transfer calculation, it is convenient to

_se the local and the mean Nusselt numbers (Nu and Nu) which

are easily derived from the temperature distribution. They

are defined as
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= h(_) Lr _ 38 I (8-19a)Nu
k _n IF2

N--u = I Nu ds , (8-19b)

F2

where h(_) is the local heat transfer coefficient and is

the contour of the tube shown in Fig. (41). The local

Nusselt numbers for the heated tube in the staggered tube

banks are plotted in Figs. (50-52). From these figures, it

can be found that for given Reynolds numbers of 16, 160 and

320, the local Nusselt number Nu increases with increasing

the Prandtl number. At low Reynolds number Re =16, where the
m

flow does not separate, the local Nusselt numbers of the

tube with Pr=O.l, 1 and i0 are shown in Fig. (50). The

general trend is that heat transfer is strong near the front

stagnation point. Physically this is because there are no

eddies behind a tube at Re =16. Thus the fluid convected
m

around the tube is already heated up in the front part of

the tube so that there will be less heat transferred from

the tube to the fluid in the rear part. At larger Reynolds

numbers of Re =160 and 320, due to their strong convection,
m

the local Nusselt number for a given Prandtl number is

generally larger than that at low Reynolds number Rem= 16 as

shown in Figs. (50-52). Due to strong convection and the

existence of eddies behind the tube for flow at Rem=160 and

320, the general trends of local Nusselt numbers illustrated
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in Figs. (51,52) are different from that of Rem=16 in Fig.

(50). Observing the flow pattern from Figs. (47,48), one can

see that the acceleration and deceleration of the flow

occurs between stagnation points A and B (due to the main

flow) and between B and C (due to the reverse flow in

separation zone). This results in high heat transfer from

tube to fluid at the region where flow is accelerating than

that where it is decelerating. Therefore, in Figs. (51,52)

two peaks and two valleys of Nu are seen, especially for the

cases of larger Prandtl numbers. The minimum Nusselt number

occurs at the separation point B, where the flow departs

from the tube surface. Zukauskas [39} also indicated this

3

phenomenon for flow at high Reynolds number (Rem--O(10)).

From the above study, one finds that the flow in the

tube banks is relatively complex and the flow pattern is

affected by the tube diameter and the configuration of the

tube banks. Thus a comparison of different configurations is

not attempted. In addition, the details of experimental

measurement for flow passing tube banks and the information

of heat transfer are not available, such as, the local

Nusselt number. Hence comparison of heat transfer predicted

in the present study with other studies is not possible.

However, a comparison is made in Fig. (53) of the local

Nusselt number obtained from the experimental measurements

{46] of a single tube with the present results. At low
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Reynolds number (Re =16 for staggered tube banks and Rem=23
m

for a single tube), the comparison shows that the Nusselt

number of the tube in the staggered tube bank is larger than

that of a single tube. Furthermore, the general tendency is

true except that the Nu of a single tube in the rear part

slightly decreases and then increases. This is because at Re m

=23 large scale of eddies are observed to appear behind a

single tube but not in the tube banks. In the Fig. (53), it

is noted that the heat transfer of the tube in the staggered

tube bank can be enhanced if the Reynolds number is

increased, epecially in the front part.

In this study, the predominantly laminar flow for R_n

<310 is considered. The mean Nusselt numbers for each fluid

of Pr=O.l, 1 and I0 are given in the following table.

stag'gered tube banks

Re Pr

0.1

5 1.0

i0.

0.i
5O 1.0

i0.
0.i

i00 1.0

NU

o. 358
0.678

1.477

0.787'

- 2 .-0 8 0

5.60

"l.224

"" 3.812

9.248

NU 0.166 Re I/2 Pr I/3 single._ _ = ., cylinder

0.434

i. 2....

" 1.39

3.0 1.66

6.46 ......
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From this table, it is seen that the heat transfer can be

significantly affected if the Reynolds number and the

Prandtl number are increased. In the range of predominantly

laminar flow (Rem<310), the correlation of the mean Nusselt

number with the Reynolds number and the Prandtl number is

approximately expressed as :

= 0.166R /2 (8-201N--6

According to the recommendation by Morgan I_71, the mean

Nusselt number of a single tube for air may be expressed as

follows :

0. 384
Nu = 0.795 Re

m

0.471
Nu = 0.583 Re

m

for l<Re <35 ,

for 35<Re <5000

Three mean Nusselt numbers for a single tube at Re =16, 160
m

and 320 are calculated by equation (8-21) and listed in the

above table. Comparison among these three mean Nusselt

numbers with those of staggered tube banks at Pr=l.O, leads

to a conclusion that the heat transfer from the tube to the

fluid in the staggered bank_ is larger than that in the

single tube.
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8.6 Conclusions

In this chapter, the FA method combined with the

boundary-fitted coordinate system is used to predict the

flow and heat transfer in tube bundles. The FA solution is

obtained for the two-dimensional Mav_er-Stokes equations and

the energy equation in the transformed plane. This FA

solutlon is obtained for the cases of 16<Re_n<320 or

1.6<Pe<3200. The results of the stream function, vorticity

and temperature are plotted and the heat transfer is

discussed. The comparison of these results with other

predictions is made whenever possible, and the physical

trend of flow and heat transfer are illustrated and

explained.

It is shown that the boundary-fitted coordinate

transformation can be successfully employed in the FA method

to solve flow and heat transfer problems with complex

geometries. The computational procedure for boundary-fitted

coordinates is not only systematic, but also can be adjusted

and contracted so that dense grid lines near the boundary

can be used. It is also shown that the FA method contains

the automatic upwinding influence of neighboring nodes. The

solution is relatlvely stable. In this study, it is found

that the flow pattern is affected by the tube bank and the

predominantly laminar flow may exist up to the Reynolds

number of 310. When one tube in the tube banks is heated

i
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with a higher isothermal wall temperature, the heat transfer

is larger than that from a single tube in uniform flow.
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CHAPTER IX

CONCLUSION AND RECOMMENDATION

At the present time, although the FA numerical method

is still in its developmental and evolution stage, it has

already demonstrated the advantage of invoking the local

analytic solution of the partial differential equation in

constructing the numerical solution of the linear or non-

linear partial differential equation.

Chen eta]. have successfully solved many fluid and

heat transfer problems with the FA method in the physical

plane employing the Navier-Stokes equations in either the

stream function-vorticity formulation [3,4,7,8,10] or the

velocity-pressure formulation [9,13]. Furthermore, the FA

solutions in the Cartesian coordinates for three-dimensional

Navier-Stokes equations have also been investigated by Chen

[131. From these studies it is realized that the FA method

is accurate and has smaller numerical diffusion than the

other numerical methods. Further, the system of the FA

algebraic equation converges well and is stable in iterative

process or time marching procedure. It is , therefore,

natural to extend the FA solution of unsteady two-

dimensional Navier-Stokes equations in the stream function-
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vortic_ty formulation to the problem of flow and heat

transfer with complex geometries in this study.

For problems with simple geometries, the FA solution

may be directly applied in the physical plane (x,y), either

with an equal grid size or a unequal grid size. Two such

examples, heat transfer in cavity and separation of channel

flow, are examined in Chapters V and VI. For problems with

complex geometries, the FA method is applied to the

governing equations on a boundary-fitted coordinate system.

Again, two examples, potential flow passing over an airfoil

and viscous flow and heat transfer in tube bundles are

presented in Chapter VII and VIII. In all of the four

problems considered, the FA numerical solutions are shown to

be accurate and stable during computation. Significant

results are summarized in the following.

In the problem of heat transfer in square cavity driven

by a moving wall, the FA solution for flow in the cavity is

first solved for the Reynolds number ranging from i00 to

2000. The temperature distribution and the heat transfer

along the heated moving wall are given over the range from

Pe=lO to 20,000. It is found that there exists a constant

temperature core in the cavity if Pe>lO00 for the Reynolds

numbers considered, in addition to the vorticity core

formulation at Re>lOO0.
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In the problem of a two-dimensional channel flow with

sudden expansion, the FA solution with a unequal grid size

and the linear and exponential boundary approximation is

obtained. The stream function and vorticity distributions

are plotted for Re = 25, 50, 73, 125, 191 and 229. Yhe

lengths of separation zone calculated over the range of the

Reynolds numbers considered are in good agreement %.ith the

experimental measurements, and better than those predicted

by the FD and the FE methods. The similarity relation for

the separation length and the center of the separation

eddies are found for the Reynolds numbers considered.

In the problem of the potential flow passing an

airfoil, the boundary-fitted coordinate transformation is

used to generate coordinates systems for the NACA-OOI8 and

Karmann-Trefftz airfoils. The FA solution of the Laplace

equation in the transformed plane is obtained. The

streamlines over the airfoils are plotted at three different

angles of attack, 0, 5 and I0. The FA prediction of pressure

distribution and lift coefficients is compared with the

experimental measurements and the theorectlcal calculations.

In solving the viscous flow and heat transfer problem

in tube bundles, the boundary-fitted coordinate system is

generated for a region bounded by the symmetric and periodic

condition. Then the steady FA solution is obtained the

boundary-fitted coordinates. For the configuration
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considered the critical Reynolds number of the predominantty

laminar flow is known at around 310. Thus the flow patterns,

vorticity and temperature distributions and the heat

transfer of a tube wall are plotted and discussed over the

rankle of Re_320. It is found that _n the tube bundles flow

when only one tube is heated while the other tubes are kept

at the fluid temperature, the heat transfer between the

heated tube and fluid Is larger than that of a sln,_le heat_,d

tube In the uniform flow.

Although the FA solutlons of the convective transport

equat,on are _hown to be accurate and stable it_ [he above

;_robloms, some Improvements can be made :n future studles.

b'll'st, for high Reynolds number flows, one should

Irlve:;t l,latt, a boundary-fitted coordinate system -;uch that

close to the boundary the grld near the boundary wall can b,,

made a:_ flne ,_s requlred whlle maintalnlng a coarv,_ _rtd

otzt,._ide the boundary. It is round _n the p_esent

_nve,_t 1,1at lon that It a grid r_ear the boundary Is severely

dlqtorted alld nollorthooonal In the physical plane the

truth<at 1ot_ error ch£e to the gz'Id _enoratlon may ttlctease by

a factor <+t about I/sln: + tot flrst derlvatlves and (I sxtx; +}

t er second detiv,_tIves [48} when the cooxdlnatv

transformatlon Is st) fred by the FD method Here th_ angle

denotes the lnterl_al angle o! the element. It is suggested

that the governlnG equation (3-?) to: boundary-f_tted

o

|
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coordinates be treated with the FA method so that the

numerical error in the distorted grid may be minimized.

Secondly, since the computation of the FA coefficients

still involve one series summation given in equation (4-25),

the computational time required by the FA method is still

large. In order to reduce the computational time, an

alt£rnative analytic solution technique of obtaining the

analytic solution should be studied.

Finally, for future application of the FA method the

three dimensional boundary-fitted coordinate transformatlon

and the turbulent flow should be considered.
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APPENDIX A

RELATIONS BETWEEN PHYSICAL

AND TRANSFORMED PLANES

This appendix contains the pertinent definitions and

relations between the physical (x,y) plane and transformed

(_, _) plane used in the present study. Basically the

relations and the notation used in Ref. [I(] is retained

here. The function f(x,y,t) is defined as a twice

continuously differentiable scalar function of x,y and t and

the vector F(x,y):F!(x,y)i+F2(x,y)j is a continuously

differentiable vector-valued function where i and j are the

conventional cartesian coordinate unit vectors.

It should be noted that all derivative transformations

given here are in the geometrically non-conservation form.

Definitions of the transformation relevent to the

present study are

2 2
_=x +y

q n

8=x_xq+y_Y n

2 2

Y=×_ +Y£

(A-l)

(A-2)

(A-3)
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Dx=eX _ _- 2 8x _n+y x n n

Dy=eY_-2SY_n+YYnn

o= (Y_Dx-X_Dy)/J

_= (X_Dy-ynD x)/J

J=x_y n-xqy_

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

where J is the determinant of the Jacobian

Derivative transformations for function

and (%,_) coordinate are

matrix.

f between (x,y)

f =(_f/_x)
x y, t= (Y_f_-Y_fn)/J

(A-9)

fy=(_f/_Y) x,t =(x_f -xqf£)/J (A-10)

f =(_2f/_x2 ) (y 2f_xx y, t = _-2y_y n f_n +y _2 f_n)/j2

2 y_ +y 2y_)+(y_ y_-2y_y n (x f_-x_f )/J3

2x_ 2 ) (y fq-ynf_)/J3 (A-II)+ (Yri _-2y_ynx_+Y_ xn_

fyy (_2f/_x2) x, t= (xn 2 2X_Xr] f_+x_2 f_= f_ _ )/j2

+(x 2 2x£xqy_ +x 2Y_- Y_) (x_ f_-x_f_) / J_'

+(x 2 2x_x x£ +x 2 ) f_)/j3 (_-12)x£_- x_D (y_ fq-y_

fxy =((x_yD+x_y_) f_D-x_Y_fq,q-x y f_)/J2

3

+(x yqx_£- (xFy +x y _)x% +x_y_x ) (y f_-y_f )/J

+(x yDy_- (x£y +x y_) y_ +x_y_y_) (x_f -x f_)/J3
(A -13)
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are

or

Vector Derivative Transformations for function f and F

Laplacian:

?2f=(af_-26f_n+Yf_)/J2+((ex{_-28x_n+Yxnn) (y_fn-ynf _)

+(ey_ _2By_n+yyn_ ) (Xnf__x_f_))/J3

?2f= (ef__26f_D+Tfnn+cfn+Tf_)/j2

Gradient:

?f= ((ynf{-y_fn) i+ (x£fn-x_f_) j)/j

Divergence :

?' F= (Yn (FI) _-Y£ (Pl) _+x£ (F 2) _-x n (F2) £)/j

Curl :

? XF=k (yq (_2) _-y_ (F2) n-x_ (FI) n+x_ (FI) _)/j

Unit Tangent and Normal Vectors

Normal to _-line

n(n)--Vn/[V_ I= (-y_i+x_j)//_

Normal to _-line

n(_)=V_/}q _l=(y_i-xnj)//_

Tangent to _-line

t(n)=n (n) x k=(x_i+y_j)//_

Tangent to _-line

t(_)=n (_)
x k=-(xqi+y_j)//_

(A-14)

',A-Z5)

(A -16 )

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)
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Components Tangent and Normal to

F (_) =n (_) "F= (-Y_Fl÷X£F2)//_
n

(_) =t (_) "F= (x_FI+Y_F2)//_
F t

F (_) =n (£) "F= (V_Fl-X_F2) //_
n

F(t_) =t (£) "F=- (x_F I+Y_F 2)/jr_

and n llnes

(A-23)

(A-24)

(A-25)

(A-26)

147

Directional Derivatives :

_f/_n (_) =n (_) • V f= (Tf_-Bf_)/J/_

_fl_t('_)=t (n).Vf=f_IJ_

_f/%n(_) =n (_) .V f= (_f_-Sf n)/JJ_

(_) .v f=-fn/J_

(A-27)

(A-28)

(A-29)

(A-30)
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APPENDIX B

FA FORMULATION OF UNSTEADY

2-D CONVECTIVE EQUATION

In this appendix, the analytic solution for unsteady

two-dimensional convective transport equation in the

transformed plane is derived in a local element as shown in

Fig. (l).

First, consider a dimensionless unsteady two-

dimensional convective transport equation in the physical

plane (x,y) of the form

:_xx + _yy = R (_t + UCx + VCy )+ F
• (B-i)

where _ may represent any one of convective transport

quantities, _j, such as vorticity, velocity, concentration or

temperature. The coefficients u, v and F may be fuctions of

independent variables x, y and t, and dependent variables _j

is a dimensionless parameter, and is Reynolds number

when $ represents vorticity or velocity.

In order +hat a problem with complex geometries be

solved with the beundary-fitted coordinate system in the

transformed plane (_,r,), equation (B-l) must be transformed

into the boundary-fitted coordinates. Utilizing the
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relations given in Appendix A, the governing equation (B-I)

becomes

- J Re
_ + Y-J--_nn j2Ree "_t + ( J_R---_eu _ ) ¢_ + ( _v

o ) 4_n + 2B_ ¢_n + F , (B-la)

where _ ,_ , 7 , J, o and _ are functions related to the

boundary-fitted coordinates transformation, they are given

in equations (A-l) to (A-8).

Since, in general, an analytic solution of equation

(B-l) in the local element is not available due to variable

coefficients and/or nonlinearity, the FA numerical method is

used to obtain the local analytic solution. Therefore in

order to solve the convective transport equation (B-la)

analytically in the local element on the transformed plane(_,r_

), equation (B-la) is first rearranged to be

_rr + Y-_-_ - j2Re Ct + ( J Re _ I )¢ + (-JRe ,

with

!

,_ = T + _'

J Re...
J

Reeve ) (B-2)

(B-2a)
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where _-_ and _--qare representative constant values in the

local element, for example, the velocities at the interior

point P or the area-averaged velocities over the small

element.

When the local element is small enough, the deviations

I

,_ and t_t] from the _ and _rl should be smali also. Therefore, the

I I

term JRe(_q_+_)/e may be considered as a high order

correction term. Denoting two time steps tk-land _ , one may

locally linearized the convective transport equation (B-la)

by approximating the inhomogeneous term, the higher order

correction term and the cross derivative term as a function

known from previous time step t k-l, it is

where

+ y__¢ k = j2Re_ + ( J Re_ T )._ +

(-J R__e_ _ )_,k + Fk-i (B-3)

2S J Re
.k-i - __ + F +r +'I ,, ( _ri¢ _ + _¢ ) . (B-3a)

Equation (B-3) is a linearized PDE with constant

coefficients at kth time step. In order to reduce the

complexity of the deviation and to save the computational

time, the hybrid FA method will be employed in this appendix

to approximate the unsteady term as follows :

k k-I

j2Re j2Re Cp - Cp
'_ - • = constant . (B-4)

t _ At
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nonhomogeneous part _-I (_,_,¢j) canFurthermore, the be

approximated by a representative constant value

in the element to further reduce the manupulation effort and

computational time needed. Under these approximations, the

unsteady two-dimensional convective transport equation

(B-la) is simplified to be

!

with

i J Re -- T )
A = T( _ "_n

1 J Re --

B = T( _ e _
I

and
k k-i

j2Re %p - Cp

g : _3 At + fP
(B-5a)

The constant inhomogeneous term in equation (B-5) can

be taken care of by introducing a new variable

2(A=+ B2C)

(B-6)

such that the new variable

governing equation

satisfies the homogeneous

- = 2A¢ r + 2BC_r, (B-7)

in the local element.
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For the problem to be well posed, four boundary

conditions are specified on east, west, south and north

boundaries in terms of the eight surrounding nodes of the

local element. Depending on the local element and boundary

functions chosen, different local analytic solution can be

derived. In this appendix, the uniform grid spacing local

element (A<=h=A_=k) with the exponential and linear boundary

approximation is considered. For further information see

113].

Under this consideration, the £ocal analytic solution

for steady or unsteady two-dimensional convective transport

equation is derived on a rectangular local element of unform

grid spacing on the transformed plane (K,q). For the llnear

homogeneous partial differential equation (B-7) to be well

posed in the local element shown in Fig. (I), the

exponential and linear boundary functions based on the

natural solution of equation (B-7) are specified on four

boundaries in terms of the eight boundary nodes of the local

element. For example, the boundary conditlon on north side

can be approximated by

_N(:) = aN ( e_A: - i) + b_ + cM (B-Sa)

aN -
_sinh'Ah

CNE - CNW - cothAh( ¢._IE+ ¢_'W " 2¢_C)

b_ = 2h' , c;_ = CNC

wheFe
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and the _ther three boundary conditons for south, east and

'b '%.. 'l,

west sides, i.e., _S(_), _E(n ) and _W(n ) can be similarly

approximated.

2AC (B-8b)
_S(C) = as (e - i) + bsC + c s ,

2Bn (B-Sc)
cE_rl) = a E (e -I) + bET! + c E ,

2Bn (B-Sd)
CW (rl) = aw ( e - I) + bwn + cw .

With the introduction of a change of variable

= w eAF + Bn (B-.9)

Equation (B-7) and boundary conditions (B-8) are transformed

into

w + w = CA 2 ÷ B2) w (B-10)

w(_,k) : e-Bk [ aNeA_+bNXe +(cH-aN)e-_]=Wl(5) , (B-10a)

w(_,-k)= eBk [ as eAE ÷bsxe-AC+(Cs-as)e-_ ]=w 2 (<), (B-10b)

w(h, ,!)= e-Ah [ aEe B n+bEYe-Bq÷ (cE.aE) e-BTl ] =w3(q), (B-10c)

Bq+bwY e -Elw(-h,q)= eAh [ awe -Bq+(cw-aw)e ]=w_(q).(B-10d)

Utilizing the method of superposition for the linear

equation (B-IO), this problem can be solved analytically by
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further dlviding it into four simpler problems with each of

them contains one inhomogeneous and three homogeneous

boundary conditions, it is

E w N Sw = w + ww + + w • (B-11)

Problem (I)

N + wN : (A 2 + B 2) w N (B-12)
w[_ _lq

wN(£,k) = Wl(:_) , (B-12a)

wN(<,-k) : wN(h,rl) : wN(-h, r]) : 0 - (B-12b)

Problem (2)

S + wS : (A 2 + B2) wS , (B-13)

S -k) : w2(_) , (B-13a)w £_,

k) : wS(h,rl) : wSC-h,n) : 0S,r
W %. ,_

(B-13b)

Problem (3)

w E- + w E : (A 2 + B2) w E ,

wE(h,r_) : w3('l) ,

wE(-h,r,) : wE( : ,k) : wE(5 ,-k) : 0

Problem (__)

(B-I_)

(B-14a)

(B-14b)
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wEE + wqn = (A 2 + B 2) w , (B-15)

155

wW(-h,_) : w_(n) , (B-15a)

wW(h, , ,r,) : wW(_ k) = wW($ -k) : 0 • (B-15b)

Problems (I) to (4) can be solved analytically by the

N
method of separation of variables. For example, let _ =X(_

)Y(_) and substituting it into equation (b-12), the linear

PDE is then separated into two ordinary differential

equations. They are

and

X' +_2X = 0 ,

X(-h) = X(h) = O

(B-16)

(B-16a)

Y' - (_ +B_+ t2)Y :O , (B-17)

Y(-k): 0 (B-IVa)

The two boundary conditions in the _-direction,_ = h,

in this case can be used to find the eigenvalues _ And the
n

series solution _N can be written as

N
w (_ ,_) : Z A sinhu (_+k) sinl ([+h) (B-18)

rl=l I% _ n

with
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The coefficients A in equation (B-18) can be easily

obtained by applying the nonhomogeneous boundary condition

in equation (B-12a), it is

w (_,k) = Wl(X) = _.
n=l

A n sinh 2_nk sinln(_+h)
(B-19)

where

h
1

An _ f
-h

Wl(_) sinkn(_+h) d_

and

-Bk
e

: s_inh 2_n k

h
1 A_

On _ ]" e
-h

bNh + ( )e2[ aNeon eln cN-aN n

sink (_+h) d£
n

] (B-20)

_ knh

(Ah) _ + (.knh) 2

h
1 -A_

eln : V I-h <e

[e -Ah _ (_l)ne Ah]

sinln(£ +n) d_

(B-2Oa)

2tAh)(Inh) Ah

[CAh)2+_(k h)2] _ [ e
n

(_I) n- e

h
n

(Ah)2+(lh)
n

2 [ eAh - (-l)ne-Ah] (B-20b)

e2n

h
i -At

: _ f e
-h

sink (£+h) dl
n

(Ah)

k h
n

2
+(_ h)

n

Ah
2[e

- (-l)ne-Ah] (B-20c)
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The local analytic solution (B-19) evaluated at the

interior node P(0,O) of the local element gives the FA

algebraic equation relating the interior nodal value to the

eight surrounding nodal values as

N N _ (B-21)

Wp = w (0,0) = n=iZ An sinhunk sinXnh .

Since

0 _ n=2m
_

sinl h = sin _- = m=l, 2, 3,.. ,
n _(-i) m, n=2m-i

equation (B-21) can be further simplified to be

N

Wp = Z
m=l

-Bk
= e

_C_l)me -Bk
sinhlmk

[ aNe0m+bNh elm ÷(cN-aN)e2m ]
sinh 2_mk

_(_l) m + bNh + (
Z 2cosh_mk [ aNe0m elm cN'aN)e2m ]"

m:l

(B-22)

and defining

E. =

l

-(-l)ml h
m

m:l [tAb) 2-+ (X h)2] _
m

we have

7

m:l

-(-I) m

coshumk e0m : (eAh+e -Ah)

cosh_mk

, i : 1,2 ,(B-22a)

-(-l)m_ h

E _ h)2]cosh_m km=l [(Ah) +(X m

: 2coshAh E 1
(B-22b)
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= -(-i) m -Ah

co'shPm k elm= -(eAh_em=l

= -( -l)ml h
m

m=l [(Ah) +(I h) ]coshUmkm

+ 2(Ah)(eAh+e -Ah)

= -(-l)ml h
m

Z 2 h)2]2coshPm km:l [(Ah) +(X m

= 4Ah coshAh E 2 - 2sinhAh E 1 ,
(B-22c)

= _(_l)m ®

Z coshPm k e2m = (eAh+e -Ah) Em:l

-(-l)ml h
m

m=l [(Ah)2+(Imh)2]coshPm k

= 2coshAh (B-22d)

Substituting aN, bN and _q into equation (B-22), the

local anal_tic solution becomes

,_N = e-Ah-Bk( _EI. Ah coth Ah E 2 )$NE +

eAh-Bk( +E 1- Ah coth Ah E 2 )$NW +

-Bk

e (2Ah cosh Ah coth Ah E 2 )¢NC . (B-23a)

'_"S _'E _pSimilarly, tp , _p and can be solved in terms of the

nodal values at the south, east and west boundaries,

respectively.
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-Ah+Bk( _EI - Ah coth Ah E2 ) _SE +-N = e
_p

Ah+Bk - Ah coth Ah E2 ) _SW +
e ( _EI

Bk Ah coth Ah E 2 )_SC '
e ( aAh cosh

l_, _Bk coth Bk E_ )_NE +
-Ah+Bk ( 2 _i

_E = e

e__+Bk(_{ - Bk cothBk E_ )+S_+

-Ah Bk coth Bk E_ )%WC
e ( 2Bk cosh

i E' - Bk coth Bk E_ )_NW +
Ah-Bk( __ l~W = e

Ah+Bk Bk coth Bk E½ )_SW +
e ( _E_ -

Ah B_ cothBk E_ )+We
e ( 2Bk cosh

159

(B-23b)

(B-23c)

(B-23d)

'!

where

_(_l)m(l'k)
m _------ _ i = i_ 2

' : _ _k)_ oo_hEi m=l [(B k)2 + (

and
m

, = v,-_2+B+++_,2

m

The 9-point FA formula relating the center value

its neighboring nodal values can thus be obtained by

superimposing the four

and

solutions of the linear problems (I)

through (&)' or

++,= +,+++++
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= ce-Ah-Bk_N E + eAh-Bk_N_ W + e-Ah+Bk_s E +

e_+Bk%sw_[½_EI÷Z_)-Ah cothAhE2-_k oothBk_._l

+2Ah coshAh cothAh E 2 (e-Bk_Nc + eBk_sc) +

2Bk coshBk cothBk E½ (e-Ah_Ec + eAh_wc ) (B-2_)

Since _ =I and ¢=-BC_ + An are two particular solutions

of this convective transport equation (B-7), and both of

them can be represented by the exponential and linear

boundary functions (B-IO), it is instructive to utilize

!

these exact summation terms E 1 , E1 , E 2 and _ as follows

%

(I) For _ = 1

Since ¢=I is an analytic solution of equation (B-7) and

can be represented by boundary fuctions (B-IO), it should

satisfy the FA formula (B-2_) also. By substituting

into equation (B-24) an analytic relation between _ and E'' 1

can be obtained
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O_

_p = I = (e-Ah+eAh)(e-Bk+eBk) [ _6EI+E i) -Ah co%hAh E 2 -

Bk cothBk _'_2] + 2Ah coshAh cothAh E2(e-Bk+eBk)

+ 2Bk coshBk cothBk E_[e-Ah+e Ah)

= 2coshAh coshBk(El+E{)

1

E1 + El = 2coshAh CoshBk" " (B-25)

%

(II) For _ = -BC _ + Arl

%

Similarly, _=-BC_ + A_] satisfies the FA formula (B-2_)

also. It gives _p=O, _F_=-BCh, _Nc=Ak etc. By substituting

these values into equation (B-2_), an analytic expression

between E 2 and E_ is obtained as below

_p = 0 = [Ak6e-Ah-Bk+eAh-Bk-e-Ah+Bk-e Ah+Bk) + Bh(e Ah-Bk+

eAh+Bk-e-Ah-Bk-e-Ah+Bk)] [ _(EII + E{)-Ah cothAhi 2

- Bk coihBkE½ ] + 2Ah coshAh cothAh E 2 Ak (e -Bk-

eBk) + 2Bk coshBk cothBk E_ Bk(.e Ah- e -Ah)

i (Bh sinhAh coshBk -Ak coshAh sinhBk)
= coshAh coshBk

+ 4(Ak) CBk)coshAh sinhBk cothBk E_

- 4(Ah)CBh)eoshBk sinhAh cothAh E,

or

BCh tanh Ah - Ak tanh B_

4Ah BCh cosh Ah cosh B_' (B-26a)
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E = _ ( E 1 + E'.) -Ah cothAh E 2 -Bk cothBk E_ ,

EA = 2Ah coshAh cothAh E 2 ,
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(B-26c)

(B-26d)

EB = 2Bk coshBk cothBk E_ ,
(B-26e)

then the 9-point FA solution (B-2_) can be summarized as

Sp = CNESNE + CNWSNW + CSE$SE + CECSEC + CWCSWC +

CEC*EC + Cse*sc + C._fe¢kiC ' (B-27)

where

-Ah-Bk Ah-Bk
CNE = e E , CNW = e E

-Ah+Bk Ah+Bk
CSE = e E , CSW = e E

CNC : e-Bk(EA) _ CSC : eBk(EA) ,

CEC = e-Ah(.EB) _ CWC = eAh6EB) ,

After applying the analytic expressions (B-25) and

(B-26), only one series summation term in E2 or E i is to be

evaluated In most of the applications, ten terms of

summation for calculating E2 or _ are enough to achieve an

-6
accuracy of I0
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For the unsteady, inhomogeneous convective transport

equation (B-5) with high order correction term, i.e., g_O,

the local analytic solution can be obtained by substituting

of equation (B-6) into equation (B-24) for ¢, which gives

Cp = CNFCNE +CNwCNW + CSE¢SE + CSW¢SW + CECCEC +

CWC¢W C + CNcCN C + CSC¢S c - Cpgp
(B-28)

where

Cp - 1 [ Ah(CNw + + _ _ CS
2(A2+B 2) CSW CWC CNE E

CEC ) + Bk(CsE + CSW +Csc - CNE -CNw- CNC)].(B-28a)

By substituting g of equation (B-5a) into equation

(B-28), a 10-point FA formula for steady inhomogeneous

convective transport equation with higher order correction

term can be obtained

1
Cp =

I+RCpT

CC_IECNE + CNwCNw + CSE¢SE + CSW¢SW +

CECCE c + CWCCW C + CNcCN C + CSC¢S C + _ Cp ¢ n-ip

where

- Cpfp) ,

= fn-l(.x,y Cj)IP(O,O)fp

(3-29)

Here the nodal values without superscript denote those

n-1

values evaluated at kth time step, while Cp denotes the

nodal value of interior point at (k-l)th step.
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APPENDIX C-I

GENERATION OF BOUNDARY-FITTED COORDINATES

FOR KAR_NN-TREFFTZ AIRFOIL

$INSERT

$INSERT

$INSERT

C

C

C

C

SYSCOM½ERRD.F

SYSCOM½KEYS.F

SYSCOM½A$KEYS
IMPLICIT REAL*8 (A-H,O-Z)

COMMON/ABC/A(68),B(68),X(68,25),Y(68,25),Q(68),P(68),

$XI(68),YI(68)
COMMON/EEF/VA(68,25),VC(68,25),VB(68,25),VABW(68,25),

$VFI(68,25),VF2(68,25)
DATA XI/-.5027,-.5027,-.4973,-.4867,-.4711,-.4508,

1-.4259,-.3969,.3640,-.3276,-.2879,-.2455,-.2006,-.1538

2,-.1053,-.0558,-.0056,.0447,.0948,.1440,.1920,.2393,

3 .2823,.3235,.3515,.3958,.4256,.4515,.4720,.4871,.4964

5,.4980,.4990,.4994,.4995,.4994,.4991,.4980,.4961,.4863

6,.4705,.4489,.4220,.3901,.3538,.3134,.2596,.2228,.1736
7,.1227,.0706,.0179,-.0348,-.0870,-.1380,-.1875,-.2348,

8,-.2795,-.3211,-.3593,-.3937,-.4239,-.4496,-.4705,

$-.4865,-.4973,-.5027,-.5027/

DATA yi/.0036,.0112,.0187,.0264,.0341,.0416,.0486,
1 .0552,.0611,.0661,.0702,.0733,.0753,.0762,.0759,

$,.0745,.0721,.0687,.0644,.0593,.0536,.0475,.0411,.0346

2,.0283,.0221,.0154,.0113,.0068,.0030,.0019,.0009,.0004

3,.0000,-.0005,-.0009,-.0019,-.0028,-.0056,-.0085,

4-.0117,-.0150,-.0186,-.0223,-.0261,-.0300,-.0338,

5 -.0374,-.0408,-.0438,-.0464,-.0485,-.049_,-.0506,

6 -.0505,.0497,-.0480,-.0456,-.0424,-.0384,-.0337,

7 -.0285,-.0227,-.0165,.0100,-.0032,.0036/

CALL SRCH$$(K$WRIT,'OUT3',4,2,TYPE,CODE)

INITIAL AND BOUNDARY CONDITIONS

IMAX=68

JMAX=25

IMAXI=IMAX-I

JMAXI=JMAX-I

RD=3.]41592653589793D0

D33=RD/33.

R=2.0

DO 31 I=I,IMAX

I



31

32

50

40

52

51

C
C

C
C

15

25

80

DEG=RD-(I-2)*D33

X(I,JMAX)=R*DCOS(DEG)

Y(I,JMAX)=R*DSIN(DEG)
CONTINUE

DO 32 I=I,IMAX
X(I,I)=XI(I)
Y(I,I)=YI(I)

CONTINUE
DO 40 J=2

DO 50 I=2

X(I,J)=X(
Y(I,J)=Y(

CONTINUE

CONTINUE

OF POOR QUALI'i't'

,JMAXI

,IMAXI

I,I)+((X(I,JMAX)-X(I,I))*(J-I)*.7)/JMAXI
I,I)+((Y(I,JMAX)-Y(I,I))*(J-I)*.7)/JHAXl
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DO 52 I=I,IMAX

WRITE(6,51)I,X(I,I),Y(I,I)

CONTINUE

FORMAT(4X,I2,3X,F6.4,3X,F6.4)

*******************************************************

CALCULATION OF COORDINATE TANSFORMATION
*******************************************************

DO 15 J=2,JMAXI

Q(J)=CON(J,I,I)

WRITE(6,200)Q(J)
CONTINUE

DO 25 I=2,IMAXI
P(I)=0.0

WRITE(6,200)P(I)

CONTINUE
N=I

DO 65 J=2,JMAXI
K=J

X(I,K)=X(IMAXI,K)

Y(I,K)=Y(IMAXI,K)

X(IMAX,K)=X(2,K)
Y(IMAX,K)=Y(2,K)

DO 70 I=2,IMAXI

XET=X(I,J+I)-X(I,J-I)
XXI=X(I+I,J)-X(I-I,J)

YET=Y(I,J+I)-Y(I,J-_)

YXI=Y(I+I,J)-Y(I-I,J)

XXIET=X(I+I,J+I)-X(I+I,J-I)+X(I-I,J-I)-X(I-I,J+I)

YXIET=Y(I+I,J+I)-Y(I+I,J-I)+Y(I-I,J-I)-Y(I-I,J+I)
AF=(XET)**2+(YET)**2
BT=XXI*XET+YXI*YET

GM=(XXI)**2+(YXI)**2

FX=(AF*(X(I-I,J)+X(I+I,J))-(BT*XXIET/2.)

I+GM*(X(I,J+I)+X(I,J-I)))/(2.*(AF+GM))
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C
C

C
C

C

C
C
C
C
C

FY=(AF*(Y(I-I,J)+Y(I+I,J))-(BT*YXIET/2.)

I+GM*(Y(I,J+I)+Y(I,J-I)))/(2.*(AF+GM))
XYJ=.25*(XXI*YET-XET*YXI)

XAD=((XYJ)**2*(XET*Q(J)+XXI*P(I)))/(AF+GM)

YAD=((XYJ)**2*(YET*Q(J)+YXI*P(I)))/(AF+GM)

FX=FX+XAD
FY=FY+YAD

75 X(I,J)=X(I,J)+(FX-X(I,J))*I.5

Y(I,J)=Y(I,J)+(FY-Y(I,J))*I.5

70 CONTINUE

65 CONTINUE

IF(N.GT.300) GO TO 85

EPS=0.0

DO 77 J=2,JMAXI
EPSI=X(I,J)-X(IMAXI,J)

IF(DABS(EPSI).GT.DABS(EPS))EPS=EPSI

EPS2=X(2,J)-X(IMAX,J)
IF(DABS(EPS2).GT.DABS(EPS))EPS=EPS2

EPS3=Y(I,J)-Y(IMAXI,J)

IF(DABS(EPS3).GT.DABS(EPS))EPS=EPS3

EPS4=Y(2,J)-Y(IMAX,J)
IF(DABS(EPS4).GT.DABS(EPS))EPS=EPS4

77 CONTINUE

N=N+I

WRITE (6,202) N, EPS

FORMAT(IX,'ITERATION AND EPS ARE',I4,FI3.7)

IF(DABS(EPS).LT.0.0000001)GO TO 85
GO TO 80

PRINT THE COORDINATES GENERATED IN THE

TRANSFORMED PLANE

85

90

i00

200

400

500

WRITE (6,500) N

DO 90 I=I,IMAX
WRITE (6 ,

WRITE (6 ,

WRITE (6,

FORMAT ('

FORMAT (8

FORMAT (9
FORMAT (5

i00 ) I

200) (X(I,J),J=I,JMAX)

200) (Y(I,J),J=I,JMAX)

I=',I2,,50X,'** X-COORDINATE

FI0.5)

F5.2)

0X,'***** N=',I3,' *****')

**,)

CALCULATION OF TRANSFORMED COEFFICIENTS

DO 411 IX=2,IMAXI

DO 411 I¥=2,JMAXI

XZ=0.5*(X(IX+I,IY)-X(IX-I,IY))
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91

92

93

94

95

96
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XZZ=X(IX+I,IY)-2.0*X(IX, IY)+X(IX-I,IY)

XE=0.5*(X(IX, IY+I)-X(IX, IY-I))

XEE=X(IX,IY+I)-2.0*X(IX, IY)+X(IX,I¥-I)

YZ=0.5*(Y(IX+I,IY)-Y(IX-I,IY))

YZZ=Y(IX+I,IY)-2.0*Y(IX, IY)+Y(IX-I,IY)

YE=0.5*(Y(IX, IY+I)-Y(IX, IY-I))

YEE=Y(IX,IY+I)-2.8*Y(IX, IY)+Y(IX,fY-I)

XZE=0.25*(X(IX+I,IY+I)-X(IX+I,IY-I)+X(IX-I,IY-I)
1 -X(IX-I,IY+I))

YZE=0.25*(Y(IX+I,IY+I)-Y(IX+I,IY-I)+Y(IX-I,IY-I)

1 -Y(IX-I,IY+I))
ARFA=XE*XE+YE*YE
BETA=XZ*XE+YZ*YE

GAMA=XZ*XZ+YZ*YZ
BINJ=XZ*YE-XE*YZ

CODX=ARFA*XZZ-2.0*BETA*XZE

1 +GAMA*XEE
CODY=ARFA*YZZ-2.0*BETA*YZE

1 +GAMA*YEE

COZE=(YZ*CODX-XZ*CODY)/BINJ

COTA=(XE*CODY-YE*CODX)/BINJ

VA(IX,IY)=-O.5*COTA/ARFA

VC(IX, IY)=GAMA/ARFA

VB(IX,IY)=-0.5*COZE/GAMA
VA_;(IX, IY)=0.5*BIMJ/ARFA

VFI(IX,IY)=BINJ*BINJ/ARFA

VF2(IX,IY)=BETA/ARFA
CONTINUE

DO 91 I=2,IMAXI

WRITE(6,201)I

WRITE(6,200)(VA(I,J),J=2,JMAXl)

DO 92 I=2,IMAXI

WRITE(6,201)I

NRITE(6,200) (VB(I,J),J=2,JMAXI)
DO 93

WRITE

%_RITE

DO 94

WRITE

WRITE

DO 95

WRITE

WRITE

DO 96

WRITE
WR ITE

I=2,1MAXI
(6,201)1

(6,200)(VC(I,J),J=2,JMAXI)

I=2,1MAXI

(6,201)I

(6,200) (VABW(I,J),J=2,JMAXI)

I=2,IMAXI

(6,201)I

(6,200) (VFI(I,J),J=2,JMAXI)

I=2,IMAXI
(6,201)I

(6,200)(VF2(I,J),J=2,JMAXI)
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FORMAT(IX, 'ZETA=' ,I3)

CALL EXIT

END

FUNCTION SUBROUTINE TO CALCULATE THE CONTRACTION FACTOR
*******************************************************

FUNCTION COII(I,JI,J2)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION AK(74),CK(74)

CON=0.

CI=I00.

C2=0.5

DO i0 J=JI,J2

AK (J) =CI- (J-Jl) *i.

CK(J) =C2

i0 CONTINUE

DO 20 J=Ji,J2

M= I-J

IF(M) 1,2,3

i SIG=-I.

L=-M

GO TO 4

3 SIG=I.

L=M

4 GP=CK (J)*L

XM=DEXP (GP)

CON1 = (-I.*AK(J) *SIG) / (XM)

GO TO 6

2 CON1=0.

6 CON=CON+CON1

20 CONTINUE

RETURN

END
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APPENDIX C-2

SEPARATION OF CHANNEL FLOW OVER A

BACKWARD FACING STEP
*******************************************************

INPUT GIVEN DATA

IXMAX=46
IYMAX=I6

IZ_X=IXMAX

IR_X=IYMAX

IXMI=IXMAX-I

IYMI=IYMAX-I

IZMI=IXMI

IRMI=IYMI

ITERP=I5

ITERZ=6

IEND=250

L=I

NM=20
EPE=0.000001

ilX=0.1"5.0/3.0

lIY=0.5/5.
DX=IiX

DY=HY

DXX=HX*HX
DYY=HY*HY

TAU=0.3

Q=2./3.

C
C
C
C
C

$INSERT SYSCOM_ERRD.F
$1NSERT SYSCOM½KEYS.F

$INSERT SYSCOM½A$KEYS

IMPLICIT REAL*8(A-H,O-Z)

COHMON/AAA/ AA(46),BB(46),CC(46),DD(46),U(46,16),

$V(46,16),T(46),PSIN(46,16),DZTX(46,16),DZTY(46,16),

$F(46,16), ZETAN(46,16,2), PSIO (46,16)

COMMON/COEF/CHIPI (46,16) ,CPOPI (46,16) ,CPIPI (46,16) ,

$P0(46,16),
$CMIPO (46,16), CPOP0 (46,16) ,CPIP0 (46,16) ,CMIMI (46,16),

$CPOMI(46,16),CPIMI(46,16)
CALL SRCH$$(KSREAD,'AAAA',4,7,TYPE,CODE)

CALL SRCH$$(KSWRIT,'ZZZZ',4,2,TYPE,CODE)
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104

107

109
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RE=73.

DKY=I6.0/27.0

WRITE(6,50)RE,HX,HY,TAU
FORMAT(//5X,4EI2.4)

OF PO0',-'{ (_UAL!_'"t"

INITIAL AND BOUNDARY CONDITIONS

DO 105 IZ=I,IZMAX

PSIN(IZ,IRt'_X)=Q

PSIO(IZ,IRMAX)=Q

U(IZ,IRMAX)=0.0

V(IZ,IRI'_X)=0.0

PSIN(IZ,I)=0.0

PSIO(IZ,I)=0.0

U(IZ,I)=0.0
V(IZ,I)=0.0

DO 106 IR=2,6
PSIN(5,IR)=0.0

PSIO(5,1R)=0.0

U(I,IR)=0.0

V(I,IR)=0.0

DO 104 IZ=I,5

PSIN(IZ,6)=0.

U(IZ,6)=0.
V(IZ,6)=0.

DO 107 IR=7,15

YI=DY*(IR-6)

U(I,IR)=4.0*YI*(I.0-YI)
PSI_(I,IR)=2.0*YI*YI-4.0*YI*YI*YI/3.0

V(I,IR)=0.
DO 109 IR=I,IRMAX

YI=DY*(IR-I)-0.5

PSIN(IZMAX, IR)=DKY*YI+0.5*DKY*YI*YI-2.0*DKY*YI*YI*YI/

$3.+14./81.
U(IZMAX, IR)=DKY+DKY*YI-2.0*DKY*YI*YI

ZETAN(IZMAX,IR,2)=-DKY+4.0*DKY*YI

V(IZMAX, IR)=0.0

MM=0

DO 1200 IT=I,IEND

MM=MM+I

SMZET=0.

SMPSI=0.

DO 156 IX=I,IXMAX

DO 156 IY=I,IYMAX

PSIO(IX,IY)=PSIN(IX,IY)
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170

155

159

157

iii

C
C

C

C

C

C
C

C

C

C
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OF POL,:_ Cb/,LtT"_"
DO 159 ITER=I,ITERP

DO 155 IY=2,IYMI
IXB=2

IF (IY. LE. 6) IXB=6

DO 160 IX=IXB,IXMI
AA (IX) =-0.07488

BB(IX)=l.0

CC (IX) =-0.07488

DD (IX) =0. 34695" (PSIN(IX, IY+I) +PSIN(IX, IY-I) )+0.03909"

SPSIN(IX+I,

$ (PSIN (IX+I, IY+I)+PSIN (IX+I, IY-I)+PSIN(IX-I, IY+I)+
$PSIN(IX-I,IY-I))+0.00425*ZETAN(IX,IY,I)

DD (IXB) =DD (IXB) +0.07488*PSIN(IXB-I, IY)

DD (IXMI) =DD (IXMI)+0.07488*PSIN(IXMAX, IY)

CALL TRIDAG (IXB, IMMi ,AA,BB, CC, DD, T)

DO 170 IX=IXB,IXMI

PSIN(IX, IY)=T (IX)

DEPSI=PSIN(IX, IY)-PSIO (IX, IX)

IF(DABS(DEPSI).GT.DABS(SMPSI))GO TO 438

GO TO 170

SMPSI=DEPSI

IXSMP=IX
IYSMP=IY

CO_ _TINU E

CONT INU E

IF(DABS(SMPSI).LT.0.0001)GO TO 157
CONT INU E

CONT INU E

FORMAT (1IF9 .4)

CALCULATION OF VELOCITY (FROM STREAM FUNCTIOM)
*******************************************************

175

176

DO 17
DO 17

U(IX,

V(IX,
DO 17

DO 17

U(IX,

V(IX,

5 IX=6,1XMI
5 IY=2,1YMI

IY)=(PSIN(IX, IY+I)-PSIN(IX, IY-I))/2.0/HY

IY)=(PSIN(IX-I,IY)-PSIN(IX+I,IY))/2.0/HX

6 IX=2,5

6 IY=7,IYMI

IY)=(PSIN(IX, IY+I)-PSIN(IX, IY-I))/2.0/HY

IY)=(PSIN(IX-I,IY)-PSIN(IX+I,IY))/2.0/HX

DO 180 IX=6,IXMI

DO 180 IY=I,IYMAX

AH=0.5*RE*U(IX,IY)*HX
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182

183

BK=0.5*RE*V(IX,IY)*HY

IF(DABS(AH).LT.EPE) AH=EPE

IF(DABS(BK).LT.EPE) BK=EPE

EPAH=DEXP(AH)

EPBK=DEXP(BK)

COSHA=0.5*EPAH+0.5/EPAH

SINIIA=0.5*EPAH-0.5/EPAH

COSHB=0.5*EPBK+0.5/EPBK

SINHB=0.5*EPBK-0.5/EPBK

IF(IX.HE.6) GO TO 181

DZTX(IX-I,IY)=(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))/2.0/
$HX+(AH/EPAH/EPAH-SINHA*COSHA)/2.0/HX/SINHA/SINHA*

$(ZETAN(IX+I,IY,I)+ZETAN(IX-I,IY,I)-2.0*ZETAN(IX, IY,I))

IF(IY.EQ.I) GO TO 181
IF(IY.EQ. IYMAX) GO TO 181

DZTY(IX-I,IY)=(ZETAN(IX-I,IY+I,I)-ZETAN(IX-I,IY-I,I))/

$2.0/HY
181 IF(IX.NE.IXMI) GO TO 182

DZTX(IX+I,IY)=(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))/2.0/

SHX+(AH*EPAH*EPAH-SINHA*COSHA)/2.0/HX/SINHA/SINHA*
$(ZETAN(IX+I,IY,I)+ZETAN(IX-I,IY,I)-2.0*ZETAN(IX,IY,I))

IF(IY.EQ.I) GO TO 182

IF(IY.EQ.IYMAX) GO TO 182
DZTY(IX+I,IY)=(ZETAN(IX+I,IY+I,I)-ZETAN(IX+I,IY-I,I))/

$2.0/HY

IF(IY.NE.2) GO TO 183
DZTY(IX,IY-I)=(ZETAN(IX,IY+I,I)-ZETAN(IX,IY-I,I))/2.0/

$HY+(BK/EPBK/EPBK-SINHB*COSHB)/2.0/HY/SINHB/SINHB*

$(ZETAN(IX,IY+I,I)+ZETAN(IX,IY-I,I)-2.0*ZETAN(IX,IY,I))

IF(IY.NE.IYMI) GO TO 184
DZTY(IX, IY+I)=(ZETAN(IX,IY+I,I)-ZETAN(IX,IY-I,I))/2.0/

$HY+(BK*EPBK*EPBK-SINHB*COSHB)/2.0/HY/SINHB/SINHB*

$(ZETAN(IX,IY+I,I)+ZETAN(IX,IY-I,I)-2.0*ZETAN(IX,IY,I))

184 DZTX(IX, IY)=(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))/2.0/HX

$+(AH-SINHA*COSHA)/2.0/HX/SINHA/SINHA*(ZETAN(IX+I,IY,I)

$+ZETAN(IX-I,IY,I)-2.0*ZETAN(IX, IY,I))

IF(IY.EQ.I) GO TO 180

IF(IY.EQ.IYMAX) GO TO 180
DZTY(IX,IY)=(ZETAN(IX,IY+I,I)-ZETAN(IX, IY-I,I))/2.0/HY

$+(BK-SINHB*COSHB)/2.0/HY/SINHB/SINHB*(ZETAN(IX,IY+I,I)

$+ZETAN(IX,IY-I,I)-2.0*ZETAN(IX,IY,I))
180 COt_TINUE

DZTY(5,1)=(2.0*ZETAN(5,2,1)-I.5*ZETAN(5,1,1)-0. 5.

ZETAN(5,3,1))/HY

DZTY(5,1YMAX)=(I.5*ZETAN(5,1YMAX,I)+0.5*

$ZETAN(5,IYMAX-2,1)-2.0*ZETAN(5,IYMAX-I,I))/HY

DZTY(IXMAX,I)=(2.0*ZETAN(IXMAX,2,1)-I.5*

SZETAN(IXMAX,I,I)-0.5*ZETAN(IXMAX,3,1))/HY
DZTY(IXMAX, IYMAX)=(I.5*ZETAN(IXMAX, IYMAX,I)÷0.5*

SZETAN(IXMAX, IYMAX-2,1)-2.0*ZETAN(IXMAX,IYMAX-I,I))/HY
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DO 200 IX=6,IXMI

DO 200 IY=2,IYMI

AU=0.5*RE*U(IX,IY)

BV=0.5*RE*V(IX,IY)
CALL COEFF(AU,BV, HX,HY,IX, IY)

DO 202 IX=2,5

DO 202 IY=7,IYMI
AU=0.5*RE*U(IX,IY)

BV=0.5*RE*V(IX,IY)
CALL COEFF(AU,BV,HX,HY,IX,IY)

DO 1190 IX=6,IXMI

DO 1190 IY=2,1YMI

F(IX, IY)=RE*(CMIPI(IX,IY)*((U(IX-I,IY+I)-U(IX,IY))*

$DZTX(IX-I,IY+I)+(V(IX-I,IY+I)-V(IX, IY))*DZTY(IX-I,IY+I)

$+CPOPI(IX, IY)*((U(IX, IY+I)-U(IX,IY))*DZTX(IX,IY+I)+

$(V(IX, IY+I)-V(IX,IY))*DZTY(IX,IY+I))
$+CPIPI(IX, IY)*((U(IX+I,IY+I)-U(IX,IY))*DZTX(IX+I,IY+I)

$+(V(IX+I,IY+I)-V(IX, IY))*DZTY(IX+I,IY+I))+CMIP0(IX, IY)

$*((U(IX-I,IY)-U(IX,IY))*DZTX(IX-I,IY)+(V(IX-I,IY)-

$V(IX, IY) )*DZTY (IX-I, I_) )+CPIP0 (IX, IY) *
$( (U (IX+I, IY) -U (IX, IY) )*DZTX (IX+I, IY)+ (V(IX+I, IY)-

$V(IX, IY) )*DZTY (IX+I, IY) ))

F(IX, IY)=F(IX,IY)+RE*(CMIMI(IX,IY)*((U(IX-I,IY-I)-

$U (IX, IY) )*DZTXIX-I, IY-I) + (V(IX-I, IY-I)-V(IX, IY) )*

$DZTY(IX-I,IY-I))+CPOMI(IX, IY)*((U(IX, IY-I)-U(IX,IY))*

$DZTX(IX, IY-I) + (V(IX, IY-I)-V(IX, IY) )*DZTY (IX, IY-I) )

$+CPIMI(IX, IY)*((U(IX+I,IY-I)-U(IX,IY))*DZTX(IX+I,IY-I)

$+(V(IX+I,IY-I)-V(IX, IY))*DZTY(IX+I,IY-I)))

F(IX, IY)=F(IX,IY)*5.0/9.0

CONTINUE

DO 1191 IX=2,5

DO 1191 IY=2,IYMI

F(IX,IY)=0.

CALCULATION OF BOUNDARY CONDITIONS FOR VORTICITY.

DO 210 IZ=2,IZMI

ZETAN(IZ,IRMAX,2)=2.0*(Q-PSIN(IZ,IRMI))/DYY

ZETAN(IZ,I,2)=-2.0*PSIN(IZ,2)/DYY

210 CONTINUE

DO 220 IR=2,5

ZETAN(5,IR,2)=(-2.0*PSIN(6,IR)/DXX)

CONTINUE

DO 207 IR=7,15

YI=DY*(IR-6)

ZETAN(I,IR,2)=-4.0+8.0*YI+(4.0*V(2,IR)-V(3,IR))/(2-0*

SDx)
207 CONTINUE
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DO 208 IZ=2,4

ZETAN(IZ,6,2)=-2.0*PSIN(IZ,7)/DYY

ZETAN(5,1,2)=0.0

ZETAN(I,6,2)=-2.0*PSIN(I,7)/DYY

ZETAN(5,6,2)=-2.0*(PSIN(6,6)/DXX+PSIN(5,7)/DYY)

ZETAN(I,IR_X,2)=2.0*(Q-PSIN(I,IRMI))/DYY

ZETAN(IZMAX,IRMAX,2)=2.0*(Q-PSIN(IZMAX, IRMI))/DYY
ZETAN(IZMAX,I,2)=-2.0*PSIN(IZMAX,2)/DYY

DO 309 ITER=I,ITERZ

DO 305 IY=2,IYMI
I_(B=2

IF (IY.LE. 6) IXB=6

DO 320 IX=IXB,IXMI

AA (IX) =-CMIP0 (IX, IY)/(i. 0+CPOP0 (IX, IY) *RE/TAU)

BB(IX)=I.0

CC (IX)=-CPIP0 (IX, IY)/(i. 0+CPOP0 (IX, IY) *RE/TAU)

DD (IX)= (CPOPI (IX, IY) *ZETAN(IX, I¥+i, 2) +CPOHI (IX, IY) *
SZETAN(IX, IY-I,2) +CPIPI (IX, IY) *ZETAN(IX+I, IY+I, 2) +

$CPIMI(IX, IY)*ZETAN(IX+I,IY-I,2)+CMIPI(IX, IY)*
$ZTAN(IX-I,IY+I,2)+CMIMI(IX,IY)*ZETAN(IX-I,IY-I,2)

$+CPOP0 (IX, IY) * (RE/TAU*ZETAN (IX, IY,I) -F (IX, IY) ))/(i. 0

$+RE/TAU*CPOP0 (IX, IY) )

DD (IXB)=DD (IXB)-AA (IXB) *ZETAN (IXB-I, IY,2)

DD(IXMI)=DD(IXMI)-CC(IXMI)*ZETAN(IXMAX, IY,2)

CALL TRIDAG(IXB, IXMI,AA,BB,CC,DD,T)

DO 330 IX=IXB,IXMI

ZETAN(IX, IY,2)=T(IX)

DEZET=ZETAN(IX,I¥,2)-ZETAN(IX, IY,I)
IF(DABS(DEZET).GT.DABS(SMZET))GO TO 338
GO TO 330

SMZET=DEZET

IXSHZ=IX

IYSMZ=IY

CONTINUE

CONTINUE

IF(DABS(SMZET).LT.0.001)GO TO 337

GO TO 309

IF(DABS(SMPSI).LT.0.0001)GO TO 1201
CONTINUE

DO 500 IX=I,IXMAX

DO 500 IY=I,IYMAX

ZETAN(IX, IY,I)=ZETAN(IX,IY,2)

IF(MM.LT.NM) GO TO 999
MH=O
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WRITE (6,600) IT
FORMAT(//SX,'NO. OF TIME STEPS =',I5)

DO 700 IX=I,IXMAX,L

WRITE (6,112) IX

FORMAT(IX, 'IZ= ',I3)

WRITE (6, iii) (PSIN(IX, IY) ,IY=l, IYMAX, L)

DO 800 IX=I,IXMAX,L

WRITE (6,112) IX
WRITE (6,111) (ZETAN(IX, IY,2), IY=I, IYMAX,I)

CIRCUL=0.0

DO 1000 IX=6,IXMAX
DO 1000 IY=2,IYMAX

CIRCUL=CIRCUL+ (ZETAN (IX, IY, 2) +ZETAN (IX, IY-I, 2) +

$ZETAN(IX-I, IY, 2) +ZETAN(IX-I, IY-I,2) )/4.0

DO 1002 IX=2,5

DO 1002 IY=7,1YMAX

CIRCUL=CIRCUL+ (ZETAN (IX, IY, 2) +ZETAN (IX, IY-I, 2) +

SZETAN (IX-I, IY, 2)+ZETAN (IX-I, IY-I, 2))/4.0

WRITE (6,1001) IT, CIRCUL, SMPSI, IXSMP, IYSMP, SMZET, IXSMZ,
$1YSMZ
PORHAT (/IX, I3, IX, 'CIR=' ,F10.6, IX, FI0.6,IX, 213 ,IX,

$ FI0.6,1X,213)
CONTINUE
CONTINUE

DO ii01 IX=I,IXMAX,L
_JRITE (6,112) IX

WRITE(6,111) (U(IX,IY),IY=I,IYMAX,L)

DO 1102 IX=I,IXMAX,L
_;RITE(6,112)IX

WRITE(6,111) (V(IX,IY),IY=I,IYMAX,L)
DO 1299 IX=I,IXMAX
WRITE (6 ,i12) IX

WRITE (6,1350) (PSIN(IX, IY), IY=I, IYMAX)

DO 1300 IX=I,IXMAX
WRITE (6,112) IX

_RITE(6,1350) (ZE/AN(IX,IY,I),IY=I,IYMAX)

FORMAT (7FII.6)

CALL EXIT

END
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*******************************************************

SUBROUTINE TO SOLVE THE SYSTEM OF ALGEBRAIC EQUATIONS

SUSROUTINE TRIDAG(IF,L,A,B,C,D,V)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(46),B(46),C(46),D(46),V(46),BETA(46),

SGAMA (46 )

BETA(IF) =B(IF)
GAMMA(IF) =D (IF)/BETA(IF)

IFPI=IF+I
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DO I I=IFP1,L

BETA(I) =B(I)-A(I) *C(I-1)/BETA(I-1}

GAMMA (I )= (D (I)-A (I)*GAMHA (I-I )}/BETA (I)

V (L) =GAMMA (L )
LAST= L- IF

DO 2 K=I,LAST
I=L-K

V(I) =GAMMA(I)-C(I) *V(I+I)/BETA(I)
RETURN

END
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SUROUTINE TO CALCULATE THE FA COEFFICIENTS FOR

UNEQUAL SIZE GRID

I0

SUBROUTINE COEFF(A,B,HX,HY,IX,IY)

IMPLICIT REAL*8(A-H,O-Z)

COHMON/COEF/CMIPI(46,16),CPOPI(46,16),CPIPl(46,16),
$P0(46,16),

$CMIP0(46,16),POP0(46,16),CPIP0(46,16),CMIMI(46,16),

$CPOMI(46,16),CPIMI(46,16)
PI=3.141592653589793D0

EPE=0.000001

AH=A*IIX

BH=B*HX

HXY=HY/HX

IF(AH.LT.0.0) EPA=-EPE
EPA=EPE

IF(BHoLT.0.0) EPB=-EPE

EPB=EPE

IF(DABS(AH).LT.EPE) AH=EPA

IF(DABS(BH).LT.EPE) BH=EPB
AK=AH*HXY

BK=BH*HXY

EY2=0.0

DO 10 I=l,ll

PWR= (-i .0) **I

ZA= (I-0.5) *PI

AB= (AK*AK+BK*BK+ ZA* ZA) **0.5/HXY

COSH=PWR*ZA*2.0/(DEXP(AB) +DEXP (-AB))
EY2=EY2-COSII/(BK*BK+ZA*ZA)**2

EPAH=DEXP(-AH)

EPBK=DEXP(-BK)

COSHA=0.5*EPAH+0.5/EPAH

COSHB=0.5*EPBK+0.5/EPBK

COTHA=(I.0+EPAH*EPAH)/(I.0-EPAHtEPAH)

COTHB=(I.0+EPBK*EPBK)/(I.0-EPBK*EPBK)

EX2=EY2*HXY*HXY+(BK/COTHA-AH*HXY*HXY/COTHB)/
1 (4.0*AH*BKtCOSHA*COSHB)
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E=0.2 5/COSHA/COSHB-AH*COTHA*EX2-BK*COTH B*EY2

EA= 2.0*AH* COSHA*COTHA* EX2

EB=2.0*BK*COSHB*COTHB*EY2

CMIPI (IX, IY)=E/EPAH*EPBK

CPIPI (IX, IY) =E*EPAH*EPBK

CMIMI (IX, IY) =E/EPAH/EPBK

CPIMI (IX, IY )=E* EPAH/EPBK

CPOPI (IX, IY) =EA*EPBK

CPOMI (IX, IY) =EA/EPBK

CMIP0 (IX, IY) =EB/EPAH

CPIP0 (IX, IY)-EB*EPAH

CPOP0 (IX, IY) = (0.5*A*HX * (CMIPI (IX, IY) +CMIP0 (IX, IY)+

1 CMIMI (IX, [Y)-CPIPI (IX, IY) -CPIP0 (IX, [Y)-CPIMI (IX, IY) )

2 +0.5*B*HY* (CMIMI (IX, IY) +:POMI (IX, IY) +CPIMI (IX, IY) -

3 CPIPI(IX, IY)"CPIPI(IX, IY)-CPOPI(IX,IY)+CMIPI(IX, IY)))

$ / (A*A+B*B)

RETURN

END

L_ _t
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APPENDIX C-3

POTENTIAL FLOW OVER AN AIRFOIL

USING THE FA METIIOD WITH TIIE BOUNDARY-FITTED
COORDINATE SYSTEMS
******************************************************

C

INPUT GIVEN DATA AND BOUNDARY-FITTED COORDINATES
******************************************************

113

122

123

IXMAX=68

IYMAX=58
IXMI=IXMAX-I

IYMI=IYHAX-I
L=I

EPE=0.000001

IiX=l.0

liY=l.0
TAU=0.1

DELTA=0.3

PAI=3.141592653589793D0

ATTA=-PAI/36.
ATTA=0.

D33=2.0*PAI/66.

FORHAT(SFI0.5)

DO 122 IX=2,IXMI

READ(II,II3)(SIA(IX,IY),IY=2,IYMI)
DO 123 IX=2,IXMI

READ(II,II3)(SIB(IX,IY),IY=2,1YMI)

C
C

C
C
C

$INSERT SYSCOM½ERRD.F

$INSERT SYSCOM_KEYS.F

$INSERT SYSCOM½A$KEYS

IMPLICIT REAL*8(A-H,O-Z)

COMbION/AAA/ AA(68),BB(68),CC(68),DD(68) ,U(68,58),

$V(68,58) ,T(68) ,
SPSIN(68,58,3),PSIB(68,58_,PSIT(68,58),PSIL(68,58)

CO_IMON/BBB/SIA (68,58) ,SIB (68,58) ,SIC (68,58) ,ABW (68,58)

S ,FI(68,58),F2(68,_8),GAMAJ(68,1)

COMMOH/PSIC/PCMIPI (68,58) ,PCMIP0 (68,58), PCMIMI (68,58),

1 PCPOPI(68,58),PCPOMI(68,58),PCP!PI(68,58),

2 PCPIP0(68,58) ,PCPIMI(68,58),PCPOP0(68,58)
CALL SRCH$$(KSREAD,'KAIN',4,7,TYPE,CODE)
CALL SRCII$$(K$WRIT,'POOI',4,2,TYPE,CODE)
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124

125

126

127

50

52

C

C

C

C

C

i00

i01

102

C

C

C

C

C

C

256

C

C

C

C

DO 124 IX=2,1XMI

READ(II,II3) (SlC(IX,IY),IY=2,IYMI)

DO 125 IX=2,IXMI

READ(II,II3) (ABW(IX,IY),IY=2,IYMI)

DO 126 IX=2,1XMI

READ(II,II3) (FI(IX,IY),IY=2,1YMI)

DO 127 IX=2,IXMI

READ(II,II3) (F2(IX,IY),IY=2,1YMI)

READ(II,II3) (GAMAJ(IX, I),[X=2,IXMI)

FORHAT (//5X, 6F8.3)

FORHAT(5X,'NO. OF ITER. =. ',I4,1X, 'SMPSI=' ,FI0.6)

INPUT BOUNDARY AND INITIAL CONDITIONS

DO i00 IX=I,IXMAX

DO i00 IY=I,IYMAX

PSIB(IX, IY)=0.

PSIN(IX, IY,I)=0.

PSIN(IX, IY,2)=0.

PSIN(IX, IY,3)=0.

DO 101 IX=I,IXMAX

PSIN(IX,I,I)=0.0

PSIN(IX,I,2)=0.0

PSIN(IX,I,3)=I.0

DO 102 IX=I,IXMAX

DEG:PAI-(IX-2)*D33

XR=I0.*DCOS(DEG)

YR=I0.*DSIN(DEG)

PSIN(IX,IYMAX,I)=YR

PSIN(IX, IYMAX,2)=-XR

PSIN(IX, IYMAX,3)=0.0

_JRITE(6,50)RE,HX, HY,TAU,ATTA

CALCULATION THE FA COEFFICIENTS FOR STREAM

FUNCTION IN THE TRANSFORMED PLANE

MM:0

DO 256 IX=2,IXMI

DO 256 IY=2,1YMI

AU:SIA(IX, IY)

BV=SIB(IX,[Y)

CSI:SIC(IX, IY)

CALL PSICOE(AU,BV, CSI,tlX,IIY, IX,IY)

CALCULATION OF TIIE STREAM FUNCION (I)
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NM=0

SMPS I= 0.0

DO 305 IY=2,IYMI

DO 321 IX=2,IXMI

PSIEZ=0.25* (PSIN(IX+I, I\'+l,l) -PSIN (IX-I, IY+I ,i) +

1 PSIN (IX-I, IY-I, I)-PSIN (IX+I, IY-I, i) )

AA(IX) =-PCMIP0 (IX, IY)

BB(IX) =i.0

CC (IX) =-PCPIP0 (IX, IY)

321 DD (IX) =PCPOPI (IX, IY) *PSIN(IX, IY+I, I) +PCPOMI (IX, IY) *

SPSIN (IX, IY-I, i) +PCPIPI (IX, IY) *PSIN(IX+I, IY+I, i) +
SPCPIMI (IX, IY) *PSIN (IX+I, IY-I, i) +PCMIPI (IX, IY) *

$PSIN (IX-I, IY+I, i) +PCMIMI (IX, IY) *PSIN(IX-I, IY-'i, i)

$ +PCPOP0(IX,IY)*(-2.0*F2(IX, IY)*PSIEZ)
DD (2) =DD (2) -AA(2) *PSIN(I, IY, I)

DD (TXI41) =DD (IXMI) -CC (IXMI) *PSIN (IXIIAX, IY, I)

CALL TRIDAG(2,IXIII,AA,BB,CC,DD,T)

DO 331 IX=2,IXHI

PSI}_( IX, IY, i) =%'(IX)

L'EPSI=PSIN(IX, IY,I)-PSIB(IX,IY)

IF(DABS(DEPSI) .GT.DABS(S[IPSI))SMPSI=DEPSI
331 COiVi"INU g

305 CONTIIiUE

DO 332 IY=I,IYMAX

"PSIN(IXMAX, IY,I)=PSIN(2,IY,I)

PSI_4 (i, IY, i) =PSIN (IXI.II,IY, I)

DO 307 IX=I,IXMAX

DO 307 IY=I,IYI.IAX

307 PSIB( IX, IY) =PSIN (IX, IY, i)
NI.I=NIl+1

IF(DABS(SMPSI).GT.0.0001)GO TO 301
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421

NIl=0

SMPSI=0.0

DO 405 IY=2,IYMI

DO 421 IX=2,IXMI

PSIEZ=0.25* (PSIN (IX+I, IY+I, 2)-PSIN( IX-I, IY+I, 2) +

1 PSIN( IX-i, IY-I, 2)-PSIN(IX+I, IY-I, 2) )

AA (IX) =-PCMI P0 (IX, IY)

i_s(IX) =i.0

cc(Ix) ---PCPIP0 (IX, IY)

DD(IX) =PCPOPI (IX, IY) *PSIN(IX, IY+I,2) +PCPOMI (IX, IY) *

SPSIN(IX, IY-I, 2) +PCPIPI (IX, IY) *PSIN(IX+I, IY+I, 2) +

SPCPIMI(IX, IY;*PSIN(IX+I,IY-I,2)+

SPCMIPI(IX, IY)*PSIN(IX-I,IY+I,2)+PCMIM-_ (IX, IY)*

SPSIN(IX-I,IY-I,2)+PCPOP0(IX, IY)*(-2.0*F2(IX,IY)*PSIEZ)
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432

407

C

C

C

C

C

C

501

521

531

505

532

DD(2)=DD(2)-AA(2)*PSIN(I,IY,2)

DD(IXHI)=DD(IXMI)-CC(IXMI)*PSIN(IXMAX, IY,2)

CALL TRIDAG(2,IXMI,A_,BB,CC,DD,T)

DO 431 IX=2,IXMI

PSIN(IX, IY,2)=T(IX)

DEPSI=PSIN(IX,IY,2)-PSIB(IX,IY)

IF(DABS(DEPSI).GT.DABS(SMPSI))SMPSI=DEPSI

CONTINUE

CONTINUE

DO 432 IY=I,IYMAX

PSIN(IXMAX, IY,2)=PSIN(2,IY,2)

PSIN(I,IY,2)=PSIN(IXMI,IY,2)

DO 407 IX=I,IXMAX

DO 407 IY=I,IYMAX

PSIB(IX, IY)=PSIN(IX,IY,2)

NM=NM+I

WRITE(I,52)NM,SMPSI

IF(DABS(SMPSI).GT.0.0001)GO TO 401

CALCULATION OF THE STREAM FUNCTION (III)
******************************************************

NM=0.0

SMPSI=0.

DO 505 IY=2,IYMI

DO 521 IX=2,IXMI

PSIEZ=0.25*(PSIN(IX+I,IY+I,3)-PSIN(IX-I,IY+I,3)+

1 PSIN(IX-I,IY-I,3)-PSIN(IX+I,IY-I,3))

AA(IX)=-PCMIP0(IX, IY)

BB(IX)=I.0

CC(IX)=-PCPIP0(IX, IY)

DD(IX)=PCPOPI(IX,IY)*PSIN(IX,IY+I,3)+PCPOMI(IX,IY) *

SPSIN(IX,IY-I,3)+PCPIPI(IX,IY)*PSIN(IX+i,IY+I,3)+

SPCPIMI(IX, IY)*PSIN(IX+I,IY-I,3)+PCHIPI(IX,IY)*

SPSIN(IX-I,IY+I,3)+PCMIMI(IX, IY)*PSIN(IX-I,IY-I,3)

$ +PCPOP0(IX, IY)*(-2.0*F2(IX,IY)*PSIEZ)

DD(2)=DD(2)-AA(2)*PSIN(I,IY,3)

DD(IXH!)=DD(IXMI)-CC(IXMI)*PSIN(IXMAX,IY,3)

CALL TRIDAG(2,IXMI,AA,BB,CC,DD,T)

DO 531 IX=2,IXMI

PSIN(IX,IY,3)=T(IX)

DEPSI=PSIN(IX, IY,3)-PSIB(IX, IY)

IF (DABS(DEPSI) .GT.DABS(SMPSI))SHPSI=DEPSI

COHTI HU E

CONTINUE

DO 532 IY=I,IYMAX

PSIN(IXMAX, IY,3)=PSIN(2,IY,3)

PSIN(I,IY,3)=PSIN(IXMI,IY,3)

DO 507 IX=I,IXMAX
DO 507 IY=I,IYMAX
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PSIB(IX, IY)=PSIN(IX,IY,3)

NM=NM+I

WRITE(I,52)NM,SMPSI

IF(DABS(SMPSI).GT.0.0001)GO TO 501
******************************************************

APPLY KUTTA CONDITION

COS=DCOS(ATTA)

SIN=DSIN(ATTA)

PSIU3=COS*PSIN(34,3,1)-SIN*PSIN(34,3,2)

PSIU2=COS*PSIN(34,2,1)-SIN*PSIN(34,2,2)

PS2U3=COS*PSIN(33,3,1)-SIN*PSIN(33,3,2)

PS2U2=COS*PSIN(33,2

PS3U3=COS*PSIN(32,3

PS3U2=COS*PSIN(32,2

PSIL3=COS*PSIN(36,3

PSIL2=COS*PSIN(36,2

PS2L3=COS*PSIN(37,3

PS2L2=COS*PSIN(37,2

,I)-SIN*PSIN(33,2,2)

,I)-SIN*PSIN(32,3,2)

,I)-SIN*PSIN(32,2,2)

,I)-SIN*PSIN(36,3,2)

,I)-SIN*PSIN(36,2,2)

,I)-SIN*PSIN(37,3,2)

,I)-SIN*PSIN(37,2,2)

PS3L3=COS*PSIN(38,3,1)-SIN*PSIN(38,3,2)

PS3L2=COS*PSIN(38,2,1)-SIN*PSIN(38,2,2)

VTI2U=3.0*GAMAJ(34,1)*(-PSIU3+4.0*PSIU2)-3.0*

$GAMAJ(33,1)*

1 (-PS2U3+4.0*PS2U2)+GAMAJ(32,1)*(-PS3U3+4.0*PS3U2)

VTI2L=3.0*GAMAJ(36,1)*(-PSIL3+4.0*PSIL2)-3.0*

SGAb_J(37,1)*

1 (-PS2L3+4.0*PS2L2)+GAMAJ(38,1)*(-PS3L3+4.0*PS3L2)

VT3U=3.0*GAMAJ(34,1)*(-PSIN(34,3,3)+4.0*PSIN(34,2,3)-

1 3.0)-3.0*GAMAJ(33,1)*(-PSIN(33,3,3)+4.0*PSIN(33,2,3)-

2 3.0)+GAMAJ(32,1)*(-PSIN(32,3,3)+4.0*PSIN(32,2,3)-3.0)

VT3L=3.0*GAMAJ(36,1)*(-PSIN(36,3,3)+4.0*PSIN(36,2,3)-

1 3.0)-3.0*GAMAJ(37,1)*(-PSIN(37,3,3)+4.0*PSIN(37,2,3)-

2 3.0)+GAMAJ(38,1)*(-PSIN(38,3,3)+4.0*PSIN(38,2,3)-3.O)

V3UL=VT3U+VT3L

IF(DABS(V3UL).LT.0.00001)GO TO 801

ALAM=-(VTI2U+VTI2L)/(VT3U+VT3L)

GO TO 802

ALAM=0.

WRITE (6,50) ALAM

%VRITE (6,1350) VTI2U, VTI 2L,VT3U, VT3 L

WRITE (i, 1350 )ALAM
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C
C
C

C
C

8O0

112

700

702

1350

C
C
C
C
C

SUPERPOSE THE SOLUTIONS OF THE THREE SUBPROBLEMS
******************************************************

DO 800

DO 8O0

PSIT(I
1

PSIL(I

$ PSIN(
CONTINU

WRITE(6

DO 700

WRITE(6
FORMAT(

_CRITE(6
DO 702

IX=I,IXMAX

IY=I,IYMAX

X, IY)=DCOS(ATTA)*PSIN(IX,IY,I)-DSIN(ATTA)*

PSIN(IX,IY,2)+ALA_I*PSIN(IX, IY,3)
X,IY)=DCOS(ATTA)*PSIN(IX,IY,I)-DSIN(ATTA) *

IX, IY,2)
E

,1350)(PSIT(66,IY),IY=I,IYMAX)

IX=I,IXMAX

,112)IX

IX,'IZ=',I3)

,1350)(PSIT(IX,IY),IY=I,IYMAX)

IX=I,IXMAX

WRITE (6 ,i12) IX

WRITE (6,1350) (PSIL(IX,IY),IY=I,IYMAX)

FORIIAT (TFII. 6)
CALL EXIT

END

SUBROUTINE TO SOLVE THE SYSYTEM OF ALGEBRAIC EQS.
******************************************************

1

SUBROUTINE TRIDAG (IF, L, A, B, C, D,V)
IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(68) ,B(68) ,C(68) ,D(68) ,V(68) ,BETA(68),

$ GAMMA (68)
BETA (IF) =B( IF)

GAMHA(IF) =D (IF)/BETA(IF)

IFPI=IF+I

DO 1 I=IFPI,L

BETA (I) =B (I) -A(I) *C (I-l)/BETA (I-l)

GAMMA(I) = (O (I)-A(I) *GAMMA(I-I) )/BETA(I)

V(b) =GAMMA(L)
LAST= L- IF

DO 2 K=I,LAST
I=L-K

V(I) =GAMMA(I) -C (I) *V(I+l)/BETA(I)

RETURN

END
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C
C

C
C

C

SUBRIUTINE TO CALCULATE THE FA COEFFICIENTS

2O

SUBROUTINE PSICOE(A,B,C,DH,DK,IX, IY)

IMPLICIT REAL*8 (A-H,O-Z)

COMMON/PS IC/PCMI P1 (68,58 ), PCMI P0 (68,58 ), PCMI M1 (68,5 b ),

1 PCPOPI(68,58),PCPOMI(68,58),PCPIPI(68,58),

2 PCPIP0(68,58),PCPIMI(68,58),PCPOP0(68,58)
PI=3.141592653589793D0
EPE=0.000001

AH=A*DH

BK=B*DK

IF(AH.LT.0.)EPA=-EPE

EPA=EPE

IF(BK.LT.O.)EPB=-EPE

EPB=EPE

IF(DABS(AH).LT.EPE)AH=EPA

IF(DABS(BK).LT.EPE)BK=EPB
AHS=AH*AH

BKS=BK*BK

BKSC=BKS*C

MM=IO

IF(C.LT.I.0)GO TO 33

E2P=0.

DO 20 M=I,MM
N=2*M-I

PWR=(-I.)**M

AN=FLOAT(N)

ELAH=AN*PI*0.5

ELAH2=ELAH*ELAH

EMUPK=(AHS+BKSC+ELAH2*C)**0.5
COSHP=. 5" (DEXP (EMUPK) +DEXP(-EMUPK) )

E2 P=- PWR *ELAH/( (BKS+ ELAH2 )**2.0 )/COSH P+ E2 P
CONT INU E

EXPAH=DEXP(AH)

EXPBK=DEXP(BK)
COSAH=0.5*EXPAH+0.5/EXPAH

COSBK=0.5*EXPBK+0.5/EXPBK

COTAH=(EXPAH*EXPAH+I.0)/(EXPAH*EXPAH-I.0)

COTBK=(EXPBK*EXPBK+I.0)/(EXPBK*EXPBK-I.0)
E2= _P+(BK*C/COTAH-AH/COTBK)/(4.0*AH*BK*COSAH*COSBK))

$/c
GO TO .4

33 E2=0.
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DO 30 M=I,MM

N=2*M-I

PWR= (-I.) **M

AN=FLOAT (N)

ELAH=AN*PI*0.5

ELAH2=ELAH*ELAH

EMUK=((AHS+BKSC+ELAH2)/C)**0.5

COSH=.5*(DEXP(EMUK)+DEXP(-EMUK))

E2=-PWR*ELAH/((AHS+ELAH2)**2.0)/COSH+E2

CONTINUE

EXPAH=DEXP(AH)

EXPBK=DEXP(BK)

COSAH=0.5*EXPAH+0.5/EXPAH

COSBK=0.5*EXPBK+0.5/EXPBK

COTAH=(EXPAH*EXPAH+I.0)/(EXPAH*EXPAH-I.0)

COTBK=(EXPBK*EXPBK+I.0)/(EXPBK*EXPBK-I.0)

E2P=C*E2-(BK*C/COTAH-AH/COTBK)/(4.0*AH*BK*COSAH*COSBK)

EA=2.0*AH*COSAH*COTAH*E2

EB=2.0*BK*COSBK*COTBK*E2P

E=0.25/(COSAH*COSBK)_AH*COTAH*E2-BK*COTBK*E2P

PCNIPI(IX, IY)=E*EXPAH/EXPBK

PC_IIP0 (IX, IY)

PCMIMI (IX, IY)

PCPOPI (IX, IY)

PCPOMI (IX, IY)

PCPI Pl (IX, IY)

PCPIP0 (IX, IY)

PCPIMI (IX, IY)

PCPOP0 (IX, IY)

1 PCMIMI (IX, IY

2 PCPIMI (IX, IY

3 PCPIMI(IX, IY

4 PCMIPI (IX, IY

_ETU RN

END

=EB*EXPAH

=E*EXPAH*EXPBK

=EA/EXPBK

=EA*EXPBK

=E/EXPAH/EXPBK

=EB/EXPAH

=E/EXPAH*EXPBK

= (0.5*AH* (PCMIPI (IX, IY) +PCMIP0 (IX, IY) +

)-PCPIPI (IX, IY)-PCPIP0 (IX, IY) -

))+0.5*BK*(PCMIMI(IX,IY)+PCPOMI(IX, IY)+

) -PCPIPI (IX, IY)-PCP0 Pl (IX, IY)-

) ) )/ (AH*AH+BK*BK*C)

I
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C

C

C

C

C
C

C

C

C

C

C

C

$
$
$

APPE_JDIX C-4

14

C
C

C

C

C

#####################################################

CALCULATE THE LIFTING COEFFICIENTS FROH
THE CIRCULATION BY INTEGRATING THE

VELOCITY ON THE AIRFOIL SURFACE

#####################################################

INSER? SYSCOII½ERRD.F

INSER? SYSCOM½KEYS.F

INSERT SYSCOM_}A$KEYS

IMPLICIT REAL*B(A-H,O-Z)

COMMON/AA/X(68,25),Y(68,25),PSIN(68,25),GAMAJ(68,1),

$VT(68,1)

CALL SRCII$$(K$READ,'LFIN',4,7,TYPE,CODE)

CALL SRCH$$(K$WRIT,'LFOU',4,2,TYPE,CODE)
IXMAX=68

IYMAX=25

IXMI=IXMAX-I

IYMI=IYMAX-I

DO ii IX=I,IXMAX
READ(II,II3) (X(IX, IY),IY=I,IYMAX)

ii READ(II,II3)(Y(IX, IY),IY=I,IYMAX)

READ(II,II3)(GA_J(IX,I),IX=2,1XMI)

DO 13 IX=I,IXHAX

13 READ(II,1350)(PSIN(IX,IY),IY=I,IYMAX)

DO 14 IX=1,34
IB=IX+34

WRITE(6,112)IX,X(IX,I),Y(IX,I),IB,X(IB,I),Y(IB,I)

21

_###########

CALCULATION

############

#########################################

OF TANGENTIAL VELOCITY OF THE AIRFOIL

#########################################

DO 21 IX=2,IXMI

VT(IX,I)=0.5*GAMAJ(IX,I)*(-PSIN(IX,3)+4.0*PSIN(IX,2)

1 -3.0*PSIN(IX,I))

VT(I,I)=VT(IXMI,I)

VF(IXMAX,I)=VT(2,1)

WRITE(6,1350) (VT(IX, I),IX=I,IXMAX)

SUMU=0.
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C

C

c

c

C

######################################################
CALCULATE THE CIRCULATIN CIR=SUM(V*dL)
WHICH IS HALF OF LIFT COEFFICIENT CL

###_##################################################

31
1350

112

113

DO 31 IX=2,1X[41

VLU=0.5*(VT(IX, I)+VT(IX+I,I))*((X(IX,I)-X(IX+I,I))**2
1 +(Y(IX,i)-Y(IX+I,I))**2)**0.5
SUNU=SUMU+VLU

WRITE(6,1350)IX,VLU,SU_IU
CONTINUE

FORMAT (7 F11.6 )

FORMAT(4X, I2,2X,FB.5,2X,F8.5,4X, I2,2X, FS.5,2X,FS.5)
FOR_T (8FI0.5)

CALL EXIT
END
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C

C

C
C

C

C

C

C

C

C

APPENDIX C-5

FLOW PAST TUBE BUNDLES

$ INSERT SYSCOM_ERRD. F

$INSERT SYSCOM½KEYS.F

$INSERT SYSCOM½A$KEYS

IMPLICIT REAL*8(A-H,O-Z)

COMMON/AAA/ AA(22),BB(22),CC(22),DD(22),U(22,21),

$V(21) ,T(22),PSIN(22,21,Z),ZETAN(22,21,2),F(22,21)

COMMON/BBB/SIA(22,21) ,SIB(22,21) ,SIC (22,21),ABW(22,21)

$,

$ ,FI(22,21),F2(22,21),GAMAJ(22,21)

COMMO_I/COEF/CMIPI (22,21), CPOPI (22,21) ,CPIPI (22,21) ,CMI

$P0(22,21),

$CMIP0(22,21),CPOP0(22,21),CPIP0(22,21),CMIMI(22,21) ,

$CPOHI (22,21) ,CPIMI (22,21)

COMMON/PSIC/PCM]PI (22,21) ,PCMIP0 (22,21) ,PCNIMI (22,21),

1 PCPOPI(22,21),PCPOMI(22,21),PCPIPI(22,21),

2 PCPIP0(22,21) .PCPIMI (22,21),PCPOPO(22,21)

CALL SRCH$$(K$READ,'ONLY',4,7,TYPE,CODE)

CALL SRCH$$(K$WRIT,'ZZZW',4,2,TYPE,CODE)

113

122

INPUT GIVEN DATA

C

C

C

C

C

IXMAX=22

IYMAX=21

IXMI=IXMAX-I

IYMI=IYMAX-I

ITERP=20

ITERZ=I2

IEND=200

L=I

NM=20

EPE=0.000001

HX=I.O

}IY=I.0

TAU=0.2

DELTA=I.0

RE=f3.6

FORHAT(SFI0.5)

DO 122 IX=2,1XMI

READ(I],II3)(SIA(IX.IY),IY=2,IYMI)
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123

124

125

126

127

50

C
C

C
C
C

I00

i0!

102

108

109

DO 123 IX=2,IXMI

READ(II,II3)(SIB(IX, IY),IY=2,1YHI)
DO 124 IX=2,1XMI

READ(II,II3)(SIC(IX, IY),IY=2,1YMI)

DO 125 IX=2,1XMI

READ(II,II3)(ABW(IX, IY),IY=2,IYMI)
DO 126 IX=2,IXMI

READ(f1,1!3) (FI(IX, IY),IY=2,IYMI)

DO 127 IX=2,1XMI
READ(II,II3)(F2(IX,IY),IY=2,IYMI)

READ(II,II_} (GAMAJ(IX,I),IX=2,10)
READ (Ii, 113) (GAMAJ (IX, IYMAX), IX=12,21)

FORI4AT (//5X, 4F12.6 )

DO 100 IX=I,IXMAX

DO i00 IY=I,IYMAX

ZETAN(IX, IY,I)=0.

ZETAN(IX, IY,2)=0.

PSIN(IX, IY,2)=0.0

DO i01 IX=I,IXHAX
PSIN(IX, I,2)=0.0

DO iG2 IX=I,IXMAX

PSIN(IX, IYMAX, 2)=4.0

DO 108 IX=II,IXMAX

ZETAN(IX,I,2)=0.
DO 109 IX=I,11
ZETAN(IX, IYMAX,2)=0.

WRITE(6,50)RE,HX,HY,TAU
*****************************************************

$ND.INITIAL Q
HM=0

DO 256 IX=2,1XMI
DO 256 IY=2,IYMI

AU=SIA(IX, IY)

BV=SIB(IX, IY)
CSI=SIC(IX,IY)

256 CALL PSICOE(AU,BV,CSI,HX,HY, IX, IY)

C
C

C
C
C

B.C. A

DO 1200 IT=I,IEND
MM=Mt|+l

SMZET=0.0

SMPSI=0.0



OF PO0_ Q! ;, ,'-=':',"
190

421

431

405

432

406

C

C

C
C

C

C
C
C

C
C

DO 406 ITER=I,ITERP
DO 405 IY=2,IYMI

DO 421 IX=2,IXMI

PSIEZ=0.25" (PSIN(IX+I, IY+I, 2)-PSIN(IX-I, IY+I,2) +

1 PSIN (IX-i, IY-I ,2) -PSIN (IX+l, IY-I, 2)

$)
AA(IX) =-PCMIP0 (IX, IY)

BB(IX)=I.0

CC (IX) =-PCPIP0 (IX, IY)

DD (IX) =PCPOPI (IX, IY) *PSIN(IX, IY+I, 2) +PCPONI (IX, IY) *
SPSIN(IX, I) Y-I, 2) +PCPIPI (IX, IY) *PSIN(IX+I, IY+I ,2) +

SPCPIMI (IX, IY) *PSIN(IX+I, YY-I, 2)+PCMIPI (IX, IY) *
$PSIN(IX-I, IY+I, 2

$ +PCPOP0 (IX, IY) *

$ F2(IX,IY)*PSIEZ

DD (2) =DD (2) -AA(2

)+PCMIMI(IX,IY)*PSIN(IX-I,IY-I,2)

(FI(IX, IY)*ZETAN(IX,IY,I)-2.0*

)
)*PSIN(I,IY,2)

505

DD(IXMI)=DD(IXMI)-CC(IXMI)*PSIN(IXMAX, IY,2)

CALL TRIDAG(2,IXMI,AA,BB,CC,DD,T)

DO 431 IX=2,IXMI

PSIN(IX, IY,2)=T(IX)

DEPSI=PSIN(IX,IY,2)-PSIN(IX,IY,I)

IF(DABS(DEPSI).GT.DABS(SMPSI))SMPSI=DEPSI
CONTINUE

CONTINUE

DO 432 IY=I,IYMAX
PSIN(IXMAX,IY,2)=4.0-PSIN(2,1YMAX+I-IY,2)

PSIN(I,IY,2)=4.0-PSIN(IXMI,IYMAX+I-IY,2)
CONTINUE

DO 505 IX=I,IXHAX

DO 505 IY=I,iY_iAX

PSIN(IX, IY,I)=PSIN(IX, IY,2)

111

175

FORHAT(IIF9.4)

DO 175 IX=2,IXMI

DO 175 IY=2,IYMI

U(IX, IY)=(PSIN(IX,IY+I,2)-PSIN(IX,IY-I,2))/2.0/HY

V(IX,IY)=(PSIN(IX-I,IY,2)-PSIN(IX+I,IY,2))/2.0/HX

CALCULATION OF VORTICITY TRANSPORT EQ.

DO 200 IX=2,IXMI

DO 200 IY=2,1YMI

AU=RE*ABW(IX, IY)*U(IX, IY)

BV=RE*ABW(IX, IY)*V(IX, IY)/SIC(IX,IY)

CSI=SIC(IX,IY)
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200

250

251

C
C

C

C

C

1190

CALL COEFF(AU,BV,CSI,HX,HY, IX, IY)

DO 250 IX=2,10

DPSIE=GAMAJ(IX,I)*(-PSIN(IX,3,2)+4.0*PSIN(IX,2,2))*0.5
ZETAN(IX, I,2)=ZETAN(IX,I,I)-DELTA*DPSIE
DO 251 IX=12,21

DPSIE=G_4AJ(IX, IYMAX)*(PSIN(IX, IYMAX-2,2)-4.0*

PSIN(IX,IYMAX-I,2)+3.0*PSIN(IX,IYMAX,2))*0.5

ZETAN(IX, IYMAX, 2)=ZETAN(IX, IYMAX,I)+DELTA*DPSIE

DO 1190 IX=2,1XMI

DO 1190 IY=2,1YMI

VORZ=0.5*(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))

VORE=0.5*(ZETAN(IX,IY+I,I)-ZETAN(IX,IY-I,I))

F(IX, iY)=2.*ABW(IX,IY)*RE*(CMIPI(IX, IY)*((U(IX-I,IY+I)

$-u([x,[Y))
$-U(IX, IY))*VORZ+(V(IX-I,IY+I)-V(IX,IY))*VORE)+

$CPOPI(IX, IY)*((U(IX, IY+I)

$-U(IX, IY))*VORZ+(V(IX,IY+I)-V(IX, IY))*VORE)

S+CPIPI(IX, IY)*((U(IX+I,IY+I)-U(IX,IY))*VORZ+

$(V(IX+I,IY+I)-V(IX,IY))*VORE)+CMIP0(IX, IY)*

$((U(IX-I,IY)-U(IX, IY))*VORZ+(V(IX-I,IY)-V(IX,IY))*
SVORE)+CPIP0(IX,IY)*((U(IX+I,IY)-U(IX,IY))*VORZ+

$(V(IX+I,IY)-V(IX, IY))*VORE))

F(IX, IY)=F(IX,IY)+2.*ABW(IX, IY)*RE*(CMIMI(IX,IY)*

$((U(IX-I,IY-I)-U(IX, IY))*VORZ+(V(IX-I,IY-I)-V(IX,IY))*

$VORE)+CPOHI(IX,IY)*((U(IX, IY-I)-U(IX,IY))*VORZ+

$(V(IX, IY-I)-V(IX, IY))*VORE)+CPIMI(IX,IY)*

$((U(IX+I,IY-I)-U(IX,IY))*VORZ+(V(IX+I,IY-I)-V(IX,IY))

$ *VORE))

F(IX, IY)=F(IX, IY)*5.0/9.0
COHTINUE

DO 306 ITER=I,ITERZ
DO 305 IY=2,1YMI

DO 320 IX=2,1XMI

ZETEZ=0.25*(ZETAN(IX+I,IY+I,2)-ZETAN(IX-I,IY+I,2)+

1 ZETAN(IX-I,IY-I,2)-ZETAN(IX+I,IY-I,2))
VORZ=O.5*(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))
VORE=O.5*(ZETAN(IX, IY+I,I)-ZETAN(IX, IY-I,I))

AA(IX)=-CtIIPO(IX,IY)/(I.O+CPOPO(IX,IY)*FI(IX,IY)*RE/

STAU)
BB(IX)=I.0

CC([X)=-CPIPO(IX, IY)/(I.O+CPOPO(IX,IY)*FI(IX,IY)*RE/
STAU)
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320 DD(IX)=(CPOPI(IX, IY)*ZETAN(IX,IY+I,2)+CPOM](IX,IY)*

SZETAH( IX, IY-I, 2) +CPIPI (IX, IY) *ZETAN (IX+I, IY+I, 2) +

$CPIIil (IX, IY) *ZETAN(IX+I, IY-I, 2) +CMIPI (IX, IY) *

SZETAIJ(IX-I, IY+I ,2) +CMII|I (IX, IY) *ZETANIX-I, IY-I, 2) +

L;CPOP0 (IX, IY) * (FI (IX, IY) *RE/TAU*ZETAN (IX, IY, i) )

& -2.0*SIA (IX, IY) *VORZ-2.0*SIB (IX, IY) *SIC (IX, IY) *VORE

1 -2.0*F2(IX, IY)*ZETEZ-F(IX,IY)))/(I.0+FI(IX, IY)*RE/TAU

2 *CPOP0 (IX, IY) )

DD(2)=DD(2)-AA(2)*ZETAN(I,IY,2)

DD (IXI.II) =DD (IXMI) -CC (IXMI) *ZETAN (IXIIAX, IY, 2)

CALL TRIDAG(2,1XMI,AA,BB,CC,DD,T)

DO 330 IX=2,IXMI

ZETAN( IX, IY,2) =T (IX)

DEZET= ZETAN (IX, IY, 2) -ZETAN (IX, IY,I)

IF (DABS (DEZET) .GT.DABS (SMZET)) SMZET=DEZET

CO,IT I NU E

COHT I NU E

DO 331 IY=I,IYMAX

Z ETAN (IXf.IAX, IY, 2 )=- Z ETAN (2, IYMAX+I- IY, 2 )

ZETAN(I, IY, 2) =-ZETAN(IXM! , IYMAX+I-IY, 2)

CO_JT I NU E

DO 500 IX=I,IXMAX

DO 500 IY=I,IYMAX

500 ZETAN(IX,IY,I)=ZETAN(IX,IY,2)

IF(MM. LT.NM) GO TO 999

IIM= 0

TAU=TAU*2.0

WRITE (6,600) IT

FORMAT(//5X,'NO. OF TIME STEPS =',I5)

DO 700 IX=I,IXMAX, L

WRITE (6,112) IX

FORIiAT (IX, ' IZ=' ,I3)

WRITE(6,1350) (PSIN(IX, IY,2),IY=I,IYMAX,L)

DO 800 IX=I,IXMAX,L

_;RITE (6,112) IX

800 WRITE (6,1350) (ZETAN(IX, IY,2),IY=I,IYMAX,I)

999 CIRCU[.=0.0

DO I000 IX=2,IXSII

DO i000 IY=2,IYMAX

i000 CIRCUL=CIRCUL+(ZETAN(IX,IY,2)+ZETAN(IX,IY-I,2)+ZETAN(I

$X-I,IY,2)

$+ZETAN (IX-I, IY-I, 2 ))/4.0

%;RITE (6, I001 )IT, TAU,CIRCUL, SMPSI, SMZET

i001 FORHAT(2X,I3,1X,F5.3,1X,'CIRCUL=' ,FI2.7,'MAX.DPSI=',FI

$2.8,

# 'MAX.DZET=',FI2.8)

1200 CONTINUE

DO 1299 IX=I,IXMAX

WRITE(6,112)IX

1299 WRITE(6,1350) (PSIN(IX, IY,I) ,IY'I,IYMAX)

330

305

331

306

C

600

112

700



F

1300

1350

C

C

C

C

C

C

C

C

C

C

C
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I.)O i300 IX=I,IXMAX

t]RITE (6,112) IX

WRITE (6,1350) (ZETAN( IX, IY,I) , IY=I, IYMAX)

FORHAT (7FII. 6)

CALL EXIT

END

*******************************************************

SUBROUTINE TO SOLVE THE SYSTEM OF ALGEBRAIC EQS.

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)

IMPLICIT REAL*8(A-H,O-Z)

DIH_HSiON A(22),B(22),C(22),D(22),V(22),BETA(22),GAMAIA

$(22)

BETA(IF)=B(IF)

GAMMA(IF)=D(IF)/BETA(IF)

IFPI=IF+I

DO 1 I=IFPI,L

BETA(I)=B(I)-A(I)*C(I-I)/BETA(I-I)

GAMMA(1)=(D(1)-A(I)*GAMMA(I-I))/BETA(I)

V(L)=GAMMA(L)

LAST=L-IF

DO 2 K=I,LAST

I=L-K

V(I)=GAMMA(1)-C(1)*V(I+I)/BETA(1)

RETURN

END

SUBROUTINE TO CALCULATE THE FINITE ANALYTIC

COEFFICIENTS FOR GENERAL UNEQUAL SIZE GRID

SUBROUTINE PSICOE(A,B,C,DH,DK,IX, IY)

IMPLICIT REAL*8(A-H,O-Z)

COMMO_]/PSIC/PCMIPI (22,21) ,PCMIP0 (22,21) ,PCMIMI (22 ,21) ,

IPCPOPI(22,21),PCPOMI(22,21),PCPIPI(22,21),PCPIP0(22,21

$),
2PCPIHI(22,21),PCPOP0(22,21)

PI=3.141592653589793DO

EPE=0.O0001

IF(A.LT.0.)EPA=-EPE

EPA=EPE

IF(B.LT.0.)EPB=-EPE
EPB=EPE

IF(DABS(A).LT.EPE)A=EPA

_F(DABS(B).LT. EPE)B=EPB

AII=A*DH

BK=B*DK

AHS=AH*AH
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2O

3O

33

44

BKS=BK*BK

BKSC = BKS*C

MM=I0.

IF(C.LT.I.0)GO TO 33

E2 P=0.

DO 20 M=I,HM
N=2*M-I

PWR = (-i.) **M

AN=FLOAT (N)

FLAH=AN* P! *0.5

ELAI!2 = ELAH* ELA}I

EMUPK= (AIIS+ BKSC+ ELAH2*C) **0.5

COSHP =. 5" (DEXP(EMUPK) +DEXP (-EMUPK))

I_2P=- P_,'_1_,'_ELAH/( (BKS+ ELAH2 ) ** 2. O )/COSii P+ E2 P

CONT INU E

EXPAII=DEXP (AH)

EXPBK=DEXP (BK)

COSAH=0.5*EXPAH+0.5/EXPAH

COSBK=O. 5*EXPBK+0.5/EXPBK

COTAH= (EXPAH *EXPAH+I. 0 )/ (EXPA}I* EXPAH-I. 0 )

COTBK= (EXPBK*EXPBK+I .0) / (EXPBK*EXPBK-I. 0)

E2= (E2 P+ (BK* C/COTAH-AII/COTBK) / (4.0 *AH*BK*COSAH*COSBK) )

$/c
GO TO 44

E2=0.

DO 30 M=I,MM

N=2 *M-I

I_,_R= (-I.) **tl

AN=FLOAT (N)

ELAII=AN*PI *0.5

ELAH 2 = ELAH * E LAH

EMUK= ((AHS+BKSC+ELAH2)/C) **0.5

COSI!=. 5" (DEXP (EHUK) +DEXP (-EMUK))

EI=-PWI{*ELAH/((AHS+ELAH2) *'2.0)/COSH+E2

CONTI NU E

EX PAIl= DEX P (AI!)

EXPBK=DEXP (BK)

COSAII= 0.5*EXPAI|+0.5/EXPAI!

COSBK=0.5*EXPIIK+0.5/EXPBK

COTAII= (EXPAII*EXPAH+ 1.0 )/ (EXPAII*EXPA,I- 1.0 )

COTBK= (EXPBK*EXPBK+I. 0) / (EXPIIK*EXPBK-I. 0)

E2 P= C* [:2- (BK*C/COTAH-AH/COTBK) / (4.0*AH*BK*COSAII*COSBK )

EA = 2.0 * AH *COSAH *COTAH* E2

EB=2. O*BK*COSBK*COTBK* E2 P

E=0.25/( COSAII*COSBK )-AH*COTAH*E2-BK* COTBK*E2 P
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PCMI P1 (IX,

PCMI P0 (IX,
PCMIMI (IX,
PCPOPI (IX,

PCPONI (IX,

PCPIPI (IX,
PCPIP0 (IX,

PCPIMI (IX,

IY )"E*EXPAH/EXPBK

IY )-EB*EXPAH
IY )=E*EXPAH* EXPBK
IY )=EA/EXPBK

IY )= EA*EXPBK

IY )=E/EXPAH/EXPBK
IY )=EB/EXPAH

IY )=E/EXPAH*EXPBK

PCP0P0 (IX, IY) _,(0.5*AH* (PCMIPI (IX, IY) +PCMIP0 (IX, IY) +
$ PCMIMI (IX, IY)

1 -PCPIPI (IX, IY)-PCPIP0 (IX, IY) -PCPIMI (IX, IY) )+

2 0.5*BK* (PCNIMI (IX, IY) +PCPOMI (IX, IY) +PCPIMI (IX, IY)
3 -PCPIPI(IX, IY)-PCPOPI(IX, IY)-PCMIPI(IX, IY)))/

4 (AH*AH+BK*BK*C)
RETURN

END

C
C
C

C

*******************************************************

SUBROUTINE COEFF IS EXACTLY SAME TO SUBROUTINE

PSICOE MENTIONED ABOVE
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C

C

C

C

C

C

C

C

C

APPENDIX C-6

CONVECTIVE HEAT TRANSFER IN TUBE BUNDLES

$INSERT

$INSERT

$INSERT

C

C

C

C

C

SYSCOM½ ERRD. F

SYSCOM½ KEYS .F

SYSCOM½A$KEYS

IMPLICIT REAL*8(A-H,O-Z)

COt_ON/AAA/ AA(41),BB(41),CC(41),DD(41),U(41,21),

SV(41,21),T(41),PSIN(41,21,2),ZETAN(41,21,2),F(41,21)

COMMON/BBB/SIA(41,21),SIB(41,21),SIC(41,21),ABW(41,21)

$ ,FI(41,21),F2(41,21),G_4AJ(41,21),Q(41,21),

$ BETAJ(41,21)

COMMON/COEF/CMIPI (41,21) ,CPOPI (41,21) ,CPIPI (41,21) ,

$CMIP0(41,21),CPOP0(41,21) ,CPIP0(41,21),CMIMI(41,21),

$CPOMI(41,21),CPIMI(41,21)

CALL SRCH$$(KSREAD,'AAAA',4,7,TYPE,CODE)

CALL SRCH$$(K$WRIT,'ZZZT',4,2,TYPE,CODE)

INPUT GIVEN DATA

113

122

123

124

IXMAX=41

IYMAX=21

IXMI=IXMAX-I

IYMI=IYMAX-I

IEND=I00

L=I

NM= 10

EPE=0.

HX=I .0

IIY:I .0

TAU = 0.

PAI S=3

D9 = PAl

ARC9=2

PE=I000

FORMAT (

DO 122

READ (11

DO 123

READ (11

DO 124

READ (11

000001

Ol

.141592653589793D0

S/2.0/I0.0

•67 *D9

8FI0.5)

IX=2,IXMI

,II3)(SIA(IX,IY),IY=2,1YMI)

IX=2,IXMI

,II3)(SIB(IX,IY),IY=2,1YMI)

IX=2,IXMI

,113)(SIC(IX,IY),IY=2,IYM1)
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125

126

127

5O

C

C

C

C

C

i00

1302

1303

107

175

C

C

C

C

C

C

200

251

DO 125 IX=2,IXMI

READ(II,II3)(ABW(IX,IY),IY=2,IYMI)
DO 126 IX=2,IXMI

READ(II,II3)(FI(IX, IY),IY=2,IYMI)

DO 127 IX=2,IXMI
READ(II,II3)(F2(IX, IY),IY=2,IYMI)

READ(II,II3)(GAMAJ(IX,I),IX=2,40)
READ(II,II3)(GAMAJ(IX, IYMAX),IX=2,40)

READ(II,II3)(BETAJ(IX,I),IX=2,40)

READ(II,II3)(BETAJ(IX,IYMAX),IX=2,40)

FORMAT(//5X,4FI2.6)

DO i00 IX=I,IXHAX

DO i00 IY=I,IYMAX

ZETAR(IX,IY,I)=0.

ZETAN(IX,IY,2)=0.

DO 1302 IX=i,22

READ(II,1350)(PSIN(IX,IY,2),IY=I,IYMAX)

DO 1303 IX=2,21

DO 1303 IY=I,IYMAX

PSIN(IX+20,IY,2)=4.0-PSIN(IX,IYMAX+I-IY,2)

DO 107 IX=II,31

ZETAN(IX,IYMAX,2)=I.0
NRITE(6,50)PE,HX,HY,TAU

DO 175 IX=2,IXMI
DO 175 IY=2,1YMI

U(IX, IY)=(PSIN(IX,IY+I,2)-PSIN(IX, IY-I,2))/2.0/IIY

V(IX,IY)=(PSIN(IX-I,IY,2)-PSIN(IX+I,IY,2))/2.0/HX

CALCULATION OF THE FA COEFFICIENTS IN

THE ENERGY EQUATION
*******************************************************

DO 200 IX=2,IXMI

DO 200 IY=2,IYMI

AU=PE*ABW(IX, IY)*U(IX,IY)

BV=PE*ABW(IX,IY)*V(IX,IY)/SIC(IX,IY)

CSI=SIC(IX,IY)

CALL COEFF(AU,BV,CSI,HX,HY, IX,IY)
DO 1200 IT=I,IEND

DO 251 IX=2,10

ZETAN(IX,IYMAX,2)=BETAJ(IX, IYMAX)*(ZETAN(IX+I,IYMAX,2)
1 -ZETAN(IX-I,IYMAX,2))/(3.0*GAMAJ(IX, IYMAX))-

2 (ZETAN(IX,IYMAX-2,2)-4.0*ZETAN(IX, IYMAX-I,2))/3.0
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253

254

255

258

257

C

C

C

C

C
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DO 252 1X=32,40

ZETAN (IX, IYMAX, 2) =BETAJ (IX, IYMAX) * (ZETAN (IX+I, IYMAX, 2)

i -ZETAN(IX-I,IYMAX,2))/(3.0*GAMAJ(IX, IYMAX))-

2 (Z ETAN (IX, IYHAX-2,2) -4.0*ZETAN (IX, IYMAX-I, 2) )/3.0

DO 253 IX=II,31

Q ( IX, I YHAX) =GA/4AJ ( IX, IYMAX) * (Z ETAN (I X, IYMAX- 2,2 )- 4.0 *

1 ZETAN(IX, IYMAX-I,2)+3.0*ZETAN(IX,IYMA.X,2))/2.0-

$ BETAJ (IX, IYMAX) *

2 (ZETAN(IX+I,IYMAX,2)-ZETAN(IX-I,IYMAX,2))/2.0

QOUT=0.

DO 254 IX=12,30

QOUT=QOUT+Q (IX, IYMAX)

QOUT=QOU'i'+ (Q(II, IYMAX) +Q(31, IYMAX) )/2.0

QOUT=QOUT*ARC9

DO 255 IX=II,31

Q(IX, I)=GAHAJ (IX, I) * (-ZETAN (IX,3,2) +4.0*ZETAN (IX, 2,2)-

1 3.0*ZETAN(IX, 1,2) )/2.0

QIN=0.

DO 258 IX=12,30

QIN=QIN+Q (IX, I)

QIN= (QIN+ (Q( ii, i) +Q(31 ,I) )/2.0) *6.23/10.

TO= DABS [QOUT-QI N)

DO 257 IY=I,IYMAX

ZETAN(IXHAX, IY,2)=TO/(4.0*PE)

%qRITE (6, ]350 )QOUT,QIN, ZETAN (IXMAX, i0,2)

DO 1190 IX=2,IXHI

DO 1190 IY=2,IYHI

VORZ=0.5" (ZETAN (IX+l, IY, I) -ZETAN (IX-I, IY, I) )

VORE=0.5*(ZETAN(IX,IY+I,I)-ZETAN(IX,IY-I,I))

F(IX,IY)=2.*ABW(IX, IY)*PE*(CHIPI(IX,IY)*((U(IX-I,IY+I)

$ -U(IX, IY))*VORZ+(V(IX-I,IY+I)-V(IX,IY))*VORE)+

$ CPOPI(IX,IY)*((U(IX,IY+I)-U(IX,IY))*VORZ+(V(IX, IY+I)

$ -V(IX,[Y))*VORE)+CPIPI(IX,IY)*((U(IX+I,IY+I)-

$ U(IX,IY))*VORZ+(V(IX+I,IY+I)-V(IX, IY))*VORE)

$ +C[IIP0(IX, IY)*((U(IX-I,IY)-U(IX,IY))*VORZ

$ +(V(IX-I,IY)-V(IX, IY))*VORE)+CPIP0(IX,IY)*((

$U(IX+I,IY)-U(IX,IY))*VORZ+(V(IX÷I,IY)-V(IX,IY))*VORE))

F(IX,IY)=F(IX, IY)+2.*ABW(IX,IY)*PE*(CMINI(IX, IY)*((

$ U(IX-I,IY-I)-U(IX, IY))*VORZ+(V(IX-I,IY-I)-V(IX, IY))*

$ VORE)+CPOMI(IX, IY)*((U(IX, IY-I)-U(IX, IY))*VORZ

$ +(V(IX, IY-I)-V(IX, IY))*VORE)+

$ CPIMI(IX,IY)*((U(IX+I,IY-I)-U(IX,IY))*VORZ+(

$ V(IX+I,IY-I)-V(IX, IY))*VORE))

F(IX,IY)_F(IX,IY)*5.0/9.0

1190 COIITINUE



O00
1200

1330

1300

1350

112

t): ; _.,,_k!J.....',,1'

DO 305 IY=2,1YMI

DO 320 IX=2,IXMI

ZETEZ=0.25*(ZETAN(IX+I,IY+I,2)-ZETAN(IX-I,IY+I,2)+
1 ZETAN(IX-I,IY-I,2)-ZETAN(IX+I,IY-I,2))

VORZ=O.5*(ZETAN(IX+I,IY,I)-ZETAN(IX-I,IY,I))

.5*(ZETAN(IX, IY+I,I)-ZETAN(IX,IY-I,I))

=-CbllPO(IX, IY)/(I.O+CPOPO(IX,IY)*FI(IX, IY)*pE/

VORE=O

aa(I×)
STAU)

BB(IX)

co(Ix)
$TAU)

DD(IX)

$ZETAN(
$+CPIMI

$ZE?AN(
$ +CP0

-2.0*

=I .0

=-CPI P0 (IX, IY )/( 1 •0+CP0 P0 (IX, IY) *FI (IX, IY) *PE/

320 = (CPOPI (IX, IY) *ZETAN (IX, IY+I, 2) +CPOMI (IX, IY) *

IX, IY-I, 2) +CPIPI (IX, IY) *ZETAN (IX+I, IY+I, 2) +

(IX, IY) *ZETAN (IX+I, IY-'I, 2) +CHI P1 (IX, IY) *

IX-I, IY+I, 2) +CMiMI (IX, IY) *Z ETAN (IX-I, IY-I, 2)

P0(IX, IY)*(FI (IX,IY)*PE/TAU*ZETAN(IX,IY,I)

SIA(IX, IY)*VORZ-2.0*SIB(IX, IY)*SIC(IX, IY)*VORE

i -2.0*F2(IX,IY)*ZETEZ-F(IX,IY)))/(I.0+FI(IX, IY)*pE/
2 TAU*CPOP0 (IX, IY) )

UD(2) =DD(2) -AA(2) *ZE'PAN(I, IY, 2)

DD(IXMI) =DD (IXHI) -CC (IXMI) *ZETAN( IXIIAX, IY, 2)

CALL TRIDAG(2,IX[qI,AA,BB,CC,DD,T)
DO 330 IX=2,1XHI

ZETAN(IX, IY, 2) =T(IX)
330 CoM'rl NUF

3o 5 CO_:?INU
_3MZET=0.

DO 307 IX=I,IXHAX

I)O 307 IY=I,IYHAX

DEZET=ZETAN(IX,I\',2)-ZETAU(IX,IY, I)
IF(DABS (1)EZET) .GT. [',AI_.':(S_IZET)) S_IZET=DEZET

307 COH'i' I _;Ui"

IF(DABS(SIIZET).LT.O.OOI)GO TO 1330

I)O 500 IX=I, IXHAX
DO 500 IY=I,IYHAX

500 ZE?AN(IX, IY,I)=Zh:TAN([X, IY,2)

%JI_ITE(6,600) IT, :;[.IZET

FOR!IAT(//5X,'NO. OF TIME STEPS =' ,15,1X,F]0.6)
COMT INU E

DO 1300 IX=I,'_XMAX

WRITE (6,112) IX

WRITE(6,1350) (ZETAN(IX,IY,I),Iy=I, IYMAX)
FORHAT (7FII .6)

FORIIAT (IX, 'IZ= ',12)
CAI.I, EXIT
END
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C
C
C
C
C
C

C
C

C

C
C

C

*******************************************************

SUBROUTINE TO SOLVE THE SYSTEH OF ALGEBRAIC EQUATIONS
THIS PROGRAM IS SAME TO THAT IN APPENDIX C-5

*******************************************************

SUBROUTINE TRIDAG(IF, L,A,B,C,D,V)

IHPLICIT REAL*8(A-H,O-Z)

DIMENSIOt_ A(41),B(41),C(41),D(41),V(41),BETA(41),GAMHA

SGAMNA (41 )
RETURN

END

SUBROUTINE COEFF(A,B,C,DH,DK,IX,IY)

IMPLICIT REAL*8(A-H,O-Z)

COHMON/COEF/CMIPI (41,21), CPOPI (41,21), CPIPI (41,21) ,CMI

1 CMIP0(41,il),CPOP0(41,21) ,CPIP0(41,21),CMIHI(41,21),

2 CPOMI (41,21) ,CPIMI (41,21)
RETURN

END

BOTTOM
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(b) Karmann-Trefftz airfoil

Figure 6 : NACA-0018 and Karmann-Trefftz airfoils.
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(c) Data of NACA-0018 airfoil
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(d) Data of Karmann-Trefftz airfoil

Figure 6 (cont'd)



OF POOR QUALITY

211

• , • i |

Figure 7 : Contracted coordinate system --

NACA-0018 airfoil.
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Figure 8 : Contracted coordinate system --

Karmann-Trefftz airfoil.
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Figure 9 : Coordinates and boundary conditions

of cavity flow.
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Figure Ii : Vorticity distribution of cavity flow.



OF POOR QUALITY

e=O

o=0 0

e--I.0

e=O

Ae=O, 1

Pr=O. 1
Re=100

Pr=l .0
Re:lO0

Pr-lO
Re-lO0

216

Figure 12 : Temperature distribution for Re = i00.
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l.'iqure 13 : Temperature distribution for Re-- I000.
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(a) sudden pipe expansion

(b) step adjacent to a free stream
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[

(c) double plane duct expansion

L- +'
+

(d) single plane duct expansion

Figure 19 : Definition sketch of channel

flow geometries.
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Figure 20 : Coordinate and description of

flow over a step
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(a) Re = 25
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Figure 21 : Stream function of laminar flow over

a step, numerical values are of

dimensionless stream function 9/_ 0.
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(f) Re = 229

Figure 21 (cont'd)
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Figure 22 : Vorticity distribution of

laminar flow over a step
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Figure 23 : Variation of recirculation zone length

with Reynolds number (Re) -- FA and measured.
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Figure 27 : Similarity in the recirculation region

flow -- path of the separation streamline

and position of vortex center.
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Figure 34 z Velocity extrapolation at

airfoil trailing edge.
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(a) 0° angle of attack

Figure 35 : Stream function of uniform potential flow

over NACA-0018 airfoil, (80 x 25)
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(b) 5 angle of attack

Figure 35 (cont'd)
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(c) i0 ° angle of attack

Figure 35 (cont'd)
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(a) 0° angle of attack

Figure 36 : Stream function of uniform potential flow

over Karmann-Trefftz airfoil, (68 x 25).
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(b) 5° angle of attack

Figure 36 (cont'd)



(c) i0 ° angle of attack

Figure 36 (cont'd)
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Figure 40 : Field transformation of tube bundles

flow problem.
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Figure 42 : Stream function of tube bundles flow.
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Figure 43 : Vorticity distribution of tube bundles flow•



OF POOR _L,IA',_ETy

Z53

i i
........ :............ . ......... _ _ i _ .............. I

_l_ ........ ""-A ."1 ,'" . .... I

to ;-, Re: :6o .? i ," .......1
1-o

.....:..-. ;'5; ....... ,_ " . ... -." ." _'- . " -._ ". ......" . ..- ..... . .'..' i'. " ...."._i

'> "'.. "-, "'..'-,,;'-,, "'-,f -,.'. .:1:................ l_-- , ....',.'

7:_ :, t ",..-:-_<.:.:> --_--o. 7._-".-_.
,:::g _" "..... , .... "........... :],:::: .............. : " : .... , ,,'i

• I" I I I I I

0.00 2.67 5.34 8.01 10.68 13.35 16,02

X

bo

U3

>.-_ t--.
£0

<4

Co

_J

...... .. ",_, ¢.;:, ,, _ -

• -J-':"."."::'-'.'.':'",.. " ,."-{'_Y:'[. ':_' " "_ ,-" " --". _-"5-".-L .:;q

.._.bi,,_,,>,.:.,:-'--:,:'_:,:CD ij_:: .':-::: .... , " ", "" :.::'.:.---:-'."-" ,-'::- ::.- 1:: ".:-'-:-"-.':-'-: ..... _: "- -' " ". - ; :; : ::':- ". - - _-_ ''_

-',,£_e.:-:----.. :., ...:,:_ :: ..-::.:'_: _'-..L-.. "-: :::::: :-:_...c_'.:.'-:-.:...:.'..-.--;. _: .-: ::.. ::;?'.-:..:.-- _/.".. ....
•".. ... ' ,- -,,:.:.:._':<::., ",:::,:'-:..:::-.:----_---:.:.--:.::-'::-.:-::::::,.- ./- ..-

". , t : ' "-,",".'-. "..'--.: --..S_T ....... : .... " ..,-'#' ."

.-::..-:. _. '......-..... <,,-_-_..o-:....;:i,,,_-";
'." -::!.::)....... :::::.::::::::.: LI-::: :_:, i

_: - ---:-_.:.. : - .7 ....._
I I I I

0.00 2,67 5.34 8.01 10.68 13.35 16.02

X

--0

Figure 43 (cont'd)



254

oRIGINAL PA_ !_

OF pOOR Q;.,},_.t.:_

CD

t_

(D
CD

C.)
t"-.
(.£)

UD
t')
t")

CD
CD
C)

c;

0.0001.335 2.670 4.005 5.340 6.675 8.010

..... : Thom and Apelt

: present

Figure 44 : Comparison of stream function for Re m = 50.



ORIGIN.A;_. _'_'_"': "

OF POOr: Q_,_,_ if
255

o

u3
CD
CD

C3
P_
CO

U3

W
CO

W

O. 0£113335 2. 670 '_. 005 5.3't0 6. 675 8.010

..... : Launder and Massey

: present

Figure 4 : Comparison of stream function for Re m = 44.7

s/d

.

B/

1

I

50 i00 150 200 250 300

Reynolds number (Re m)

Figure 46 : Lengths of separation zone behind a tube

in tube banks.

350



t"..

0

0

OF POOR _UAL_I"¢

•... "... ,.

8:

O. 00

. jl, , ' , ! f _ / _ |

I: , • , _. , / ,. . •
I : _ . ',','.\', Pr = O.l ,'/ , , ,- \
% L q I , ' ." \ ' I " _.--.--

'. . . . . f. **

O: " ................................. ........" I :' # : 0

J 'I I I l i 'l

2.67 5.34 8.01 10.68 13.35 16.02

256

b%

t-.

¢O

d

C9

fD

• .., ". , .

O= d':

t
o. 00 2.67

....','T Re : .Lb ! ' I , / ,,' I
"_'_'_ - _ ' I / (_"5 /" _I", .... ,,s, Pr - J_ , , . , , _-. -- n

x "',",\"..: -- " , / / 0' / ." 0"" ," I

',"A':;'.',',,X0 -- 1 I/' '" "" /" "" "" "".... I
/,, / ,., . .. ,

',\\',".'.'_.:_'. ...... ".-" ," ." - " ," _" ...'" X

:"0= 0
!

I I ! I I

5.34 8.01 10.68 13.35 16.02

i

L_

t'-,

"1i:o
CD.

! 1

O. 00 2.67
=1 I [" ' I i

5.34 8.01 10.68 13.35 16.02

",'I:;'_ ' ' _': ; _ ' _, d .-' ] 'II

':_ Re = 1 _ ! ,', , ., u,-_ ....... ., i'
,,"_,, ,-,_ ,_ '/'; _ ," /'..-"1 ........:: ,'1

'_,_,,_,, # = z .,;,>,;,;.- . ..,.'..:. - ' ...0-. _ I
•,,._ ;.....- . I

_,,_,_|; ..... :;-c--, -.-." .-" .- ." I

.---:-::; .....- --- -- I

Figure 47 : Temperature distribution for Re = 16.
m



P

OF FOL, i_ k_;;.:i_:;)'_ 25"7

bb

u4

b-,

CO

°° I e=&.
0.00 2.67

t_i_.!,_',:;A _. i_, _ _• ' '\.
'_,,,\:,,,,..!, Re - 160 /,, i _ , --.
\,'?..;'_':,':_',Pr = O. 1 ,, .I _ ,. ^.\.,

• '.',,.:",",,',. ^ - / .' / ' ' ', U._
, _..',_.,'_'._:,, tt = 1 _./ / / I " ,, _. ,"

t %%,_%_.. _ ." I I I II I_ ,,'
\ . ,-,,.._-.... .-" _- / • / , . .. -.

• . .:.:-....: ............... • . -" .-" .- ..

- _.,., .o .

"0.-I- ........... " .:
:'_ _ 0

i i I l
1 1 I I I

5.34 8.0t 10.68 13.35 16.02

1
CO

co 6 =
CD

CD,

_0._00

0,

I
2.67

- ::i',_ ' ';;k:';' ' .-' ', •
Re 16 0 J,,,.,,'.; -' |

_ ,,#.:,::, .. ..... I, [
'T& Pr = 1.0 ,.',;,'ii',i,. .-" ..--" ) I

_Ik ..... '"/;i: ......... -'"" , !

",._._,_ ,-',/.' ,'.-- .......... U,._ ..-" ..... " I
' _[1[_'1_¢.... .-: ::- ::" ; ', "'-- ""-'-" ./..'" . .... I

• _[."_._._z-'-: : ...... ._ .., ...- ...- ... I

• .....-
oo

o,

..'_= 0

= i • _ I
1 I I I I

5.34 8.01 t0.68 13.35 16.02

u4

b-.

£D

co @=
CD

c;_

ii • J

Pr = i0 ,_!_iq ...t!,.----_ ....:1

.'_ = 0

I ' ' I 1 ' I '' 1 ' ' ' I

0.00 2.67 5.34 8.01 10.68 13.35 16.02

,

Figure 48 : Temperature distribution for Re = 160
m



CD
C9

OF POOR QUALITY
258

''...,

0 = 0'.

ill II _l

0.00 2,67

"__ "', "'-, _,1
.... ' ii"_- '. -" ........ ..'1

........:..(I
•__, ._ .. v%J /- ',1"__ ->- .-'" ., '.1

""_.":: ::---.:::.. .... .:'- .... " ._-" ." " l!

-- .a.l ...... •

.""0= 0

i . • inl n u I I
I "[ I I I

5,34 8,01 10.68 13,35 16,02

i •

D')

u_

(.o

O= 0 '''

_1 '1
0.00 2.67

";_S'_ " ' ,_;_"-i "
",,,',_ __m,.;; '-

":i_ Re = 32 0 _;,_li ".
'_ ,;,_''I : "_

%_ Pr = 1.0 /,:t!,/:i,._"
e = 1 .,.,..t.'..::._,,,

__. _-::-..::... _i,......'V--..... 0.. 1-.:
"'_"-"_:_::_--"- -", 2" . -- ""

i n i|
I '[ I 1

5.3_ B.01 10.68 _3.35

.,'_= 0 ,
I

16,02

t'o

c_- I ..... .,,. ,.,0=0"
C.3

I 1

O. 130 2.67

"3"'_ 2Re = 3 0

, Pr - 10. _'i " o• ,. --.. ,_._,-,,. _....
",. ""<'._.. e = i .,.'._.._;/;; --'""!

•..-,-:_%. ._.. .... .,.- ,,- - ....
"'""-'-"_; - _"."_:_". ";, ",L -,_." .... _""
,, .,'. ._-':,.." ;',.j!..,: . • .... _ - . ,"

-_ - . " " - _'_ _I ",_'.'_ - -" " " . -" ,

_= 0

i "'_ '" _ _ ;
5.34 8.01 10.58 13.35 16.02

X

Figure 49 : Temperature distribution for Re m = 320 .



259

Rt_.;;,,L:L " :..... !._

OF POOR QJ,q,L;Ty

C9

,5-
e9

E3

,5
El

(4

E_D

C9

ED

!

o i

CD

c;_

--_-_ 180 +

o: Pr=0.1

o: Pr = 1.0

: Pr = i0.

le0.0 2]0.0 240.0 270.0 300.0 330.0 360.0

DEGREE

Figure 50 : Local Nusselt number of the heated

tube in tube banks for Re = 16 .
m



ORIGII_AL i-_AC__;

OF POOR QUALITY

260

c]

89

c_

cl

c_
_G

C_

G
Cb

G
c::)

c:)

c3

180 +

_: Pr = 0.i

/ _h _: Pr = 1.0

_: Pr = i0.

180.0 210.0 2'I0.0 270.0 300.0 330.0 360.0
Et3R_F_j

Figure 51 : Local Nusselt nur:CDer of the heated

tube in tube banks for Re m = 160 .



261

OF PO0_ QUALii'Y

CD

Z_
CD

c_
CD

CD

__ _ _.80 +

D: Pr=0.1

_: Pr=l.0

I I I I I

80,0 210.0 2d0.0 270.0 300.0 330.0 380.0

DEGREE

Figure 52 : Local Nusselt number ot the heated

tube in tube banks for Re = 320
m



ORIGIF',_L PAC_ ;_

OF POOR QUALITY

262

Nu

//._

/
3

i[ .J

180 210 2_0 220 300 33u 36

Degree

0

-_ : Re m = 160, Pr = 1.0, staggered tube banks.

× : Re m = 120, gas flow, single tube _46_.

_j : Re m = 16, Pr = 1.0, staggered tube banks.

o : Re m = 23 , gas flow, single tube [46].

Figure 53 : Comparison of local Nusselt number

of the heated tube in tube banks

and in uniform flow.



PART II

FINITE ANALYTIC NUMERICAL SOLUTION FOR Two-DIMENSIONAL

INCOMPRESSIBLE FLOWS OVER AN ARBITRARY BODY SHAPE

it



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ................................... ii

LIST OF TABLES ................................... v

LIST OF FIGURES .................................. vi

NOMENCLATURE ..................................... viii

CHAPTER

I.

II.

III.

IV.

V°

VI.

VII.

INTRODUCTION ............................... 1

PRiNCILPLE OF THE FINITE ANALYTIC

NUMERICAL METHOD ........................... 5

THE BOUNDARY FITTED COORDINATE SYSTEM ...... II

FORMULATION OF PROBLEM ..................... 20

4.1 Governing Equations .................... 20

4.2 Boundary Conditions .................... 21

4.3 In The Transformated Plane ............. 25

PROCEDURE OF NUMERICAL SOLUTION ............ 27

5.1 Boundary Fitted Coordinate System ...... 27
5.2 The FA Numerical Solution In The

Transformed Plane ...................... 31

FLOW AROUND A CIRCULAR CYLINDER ............ 35

6.1Phenomenan of Vortex Shedding .......... 35

6.2 Numerical Results at C-type

Outer Boundary ......................... 38

6.3 Numerical Results at OC-type

Outer Boundary ......................... 52

VORTEX SHEDDING BEHIND THE NONCIRCULAR

BODY SHAPE ................................. 70

iii

PRECEDII'_IG PAGPL L_.A.._, hOT FIL,_,I_D



7.1 Flow Over A Triangle Column ............

7.2 Flow Over An Irregular Body Shape ......

VIII. CONCLUSIONS AND SUGGESTIONS ................

REFERENCES .........................................

70

72

88

92

APPENDIX A. FINITE ANALYTIC SOLUTION OF TWO DIMENSIONAL

ELLIPTIC PARTIAL DIFFERENTIAL EQUATION 95

APPENDIX B. RELATIONSHIPS BETWEEN PHYSICAL AND

TRANSFORMED PLANE ...................... iii

APPENDIX C. CONTOUR PLOT ........................... 115

APPENDIX D. COMPUTER PROGRAM ....................... 122

iv



LIST OF TABLES

Table

5-1 Flow Chart of Boundary Fitted Coordinate

5-2

5-3

A-I

C-I

Page

System ........................................ 29

Flow Chart of Concentration Values of P & Q ... 30

Flow Chart of FA Numerical Method ............. 33

Comparison of FA and FAP Coefficients ......... Ii0

Flow Chart of Contour Plot .................... 120

v



LIST OF FIGURES

Figure Page

2-1 Typical local element ......................... 6

3-i 'C-type' outer boundary ....................... 12

3-2 'OC-type' outer boundary ...................... 12

3-3 Laplace equation ............................... 16

3-4 Poisson equation .............................. 17

4-1 'C-type' outer boundary ....................... 22

4-2 'OC-type' outer boundary ...................... 22

6-1 Regimes of fluid flow across circular cylinders 36

6-2 Small element ................................. 39

6-3 Potential flow ................................ 41

6-4 Re=5 .......................................... 41

6-5 Re=40 ......................................... 43

6-6 Observed lengths of the region of closed stream-

lines behind a circular cylinder .............. 43

6-7 Comparison between numerical calculations

and measurements .............................. 44

6-8 Re=100 (Stream line) .......................... 45

6-9 Re=100 (Vorticity f_nction) ................... 46

6-10 The Strouhal-Reynolds number relationship

for circular cylinder ......................... 48

6-11 Re=500 (Stream line) .......................... 49

vi



6-12 Re=500 (Vorticity function) ................... 50

6-13 Re=100 (Stream line) .......................... 55

6-14 Re=lO0 (Vorticity function) ................... 56

6-15 Computational domain of 'OC-type' boundary

fitted coordinates ............................ 57

6-16 Potential flow ................................ 57

6-17 Re=5 .......................................... 58

6-18 Re=40 ......................................... 59

6-19 Re=100 (Stream line) .......................... 60

6-20 Re=100 (Vorticity function) ................... 64

7-1 Computational domain of a triangle body ....... 71

7-2 Potential flow ................................ 71

7-3 Re=200 (Stream line) .......................... 73

7-4 Re=200 (Vorticity function) ................... 75

7-5 Computational domain of an arbitrary body ..... 77

7-6 Potential flow ................................ 77

7-7 Re=5 .......................................... 79

7-8 Re=40 (Stream line) ........................... 80

7-9 Re=40 (Vorticity function) .................... 81

7-10 Re=lO0 (Stream line) .......................... 82

7-11Re=lO0 (Vorticity function) ................... 85

C-I Contour of _(<i,Di) ........................... 116

C-2 Simple grid in set D* ......................... 116

C-6 Local coordinate system for triangle .......... i16

C-4 Interpolation for x and y ..................... 121

vii



NOMENCLATURE

asub , bsub,

Csub

Csub

f

FA

FD

h

J

K

L

n,m

P

O(_,n)

Re

U

(sub = E, W, N, S - 4 sides) coefficients

used in boundary approximations for the

Ellipitic partial differential equation.

(sub - ne, ne, sw, etc. (eight nodal points)

FA coefficients.

General function of _,r_ and t.

Finite Analytic.

Finite Difference.

Dimensionless grid spacing in the _-direction.

Jacobian determinate, Equation (B-8).

Dimensionless grid spacing in the n-

direction.

Partial differential operator.

Index in series summation (=1,2,3, .... ,).

Center node of an FA element.

£-line attraction function.

H-line attraction function.

Reynold number based on chord length.

Dimension-less velocity component parallel

to x-axis.

viii



Uo

V

x

Y

Reference velocity.

Dimensionless velocity component parrel to

y-axis.

Physical cartesian coordinate.

Physical cartesian coordinate.

B

1

1

u,k

Greek Symbols

Coordinate transformation parameter,

Equation (B-l).

Coordinate transformation parameter,

Equation (B-2).

Coordinate transformation parameter,

Equation (B-3).

ith contour in physical plane.

Contour in Transformed plane.

corresponding to Fi.

Transformed coordinate.

Transformed coordinate.

Coordinate transformation parameter,

Equation (B-6).

Coordinate transformation parameter,

Equation (B-7).

Kinematic viscosity.

_rorticity.

Eigenvalues.

ix



?2

Independent variable of a partial

differential equation.

Stream function.

Laplacian.

T

8
>

E

EC

i,j

N

NC

NE

NW

P

S

SC

SE

SW

W

WC

x

Y

[

n

Subscripts

East boundary.

East Central.

Nodal point location in the flow.

North boundary.

North Central.

North Eastern.

North Western.

Values evaluated at the center node of an

FA element.

South boundary.

South Central.

South Eastern.

South Western.

West Central.

West Central.

Derivative in the x-direction.

Derivative in the y-direction.

Derivative in the [-direction.

Derivative in the rl-direction.

x



F/

CHAPTERI

INTRODUCT ION

This study applies the finite analytic (FA) method

[1,2,3] to obtain the numerical solution of a uniform flow

past a two dimensional obstacle of arbitrary shape. The

fluid is assumed to be incompressible with constant

viscosity. In order to solve the flow over an arbitrary

body shape, the boundary fitted coordinate system [4,5,6,7]

is adapted. This coordinate system transforms a physically

complex geometry into a simple geometry on a transformed

plane where an accurate numerical solution can be obtained

by the finite analytic method. Furthermore in this study

the finite analytic method is modified and improved.

Vortex formation behind bluff bodies is an important

phenomena in fluid flows. Since von Karman (1912)

elucidated theoretically the vortex street phenomena that

formed far behind a body, numerous reports have been

published [8,9,10,11,12] on theoretical and experimental

aspects of the vortex street. However, theoretical analysis

of viscous vortex shedding immediately behind the obstacle

are not available. Because of computional difficulty the

first numerical solution of stationary vortex formation



I

behlnd the cylinder was not obtained until Thom(1928), who

was able to solve numerically for flow around a circular

cylinder at a low Reynolds number Re=lO. Later, Thom(1933)

improved his numerical method and obtained a solution at

Re=20. Kawaguti (1953) and Apelt(1961) used slightly

modified versions of Thom's method to carry out calculations

at Re=40. All these numerical studies at low Reynolds

numbers produce only steady separation flow behind the

circular cylinder. Experimentally, the flow pattern begins

to oscillate behind a circular cylinder if the Reynolds

number is greater than 40. Because of numerical difficulty

in predicting the oscillating phenomena of vortex shedding,

there are few published numerical solution of vortex

shedding behind a circular cylinder which agree exactly with

available experimental results to date. Examing the

previous numerical studies, one finds that there are two

major difficulties. The first difficulty comes from the

nonlinear behavior of Navier-Stokes equations at high

Reynolds number, which causes the numerical solution either

to become unstable or inaccurate. The second difficulty is

the numerical error associated in approximating the boundary

geometry, especially for a complex non-linear boundary such

as a circular cylinder. One may choose small grid size and

small time step to reduce the error, but it demands too much

computational time and storage to be economical and

practical.



3

In order to tackle these two difficulties, following

remedies are considered. The first one is to consider a

numerical method which is more accurate and efficient in

solving the Navier-Stokes equations at high Reynolds number.

In this regard, the recently developed finite analytic (FA)

method is adapted in this study. The FA method was

introduced by Chen and Li [I], and was further developed by

Chen, Naseri and Ho [2], Chen and Chen [3]. The basic idea

of the FA method is to incorporate the local analytic

solution cf the governing partial differential equation in

obtaining the numerical solution of the problem. More

detail on the FA method is discussed in Chapter 2. The

second means of resolving the computational difficulty in

predicting the flow over an arbitrary shape body is to adapt

the boundary fitted coordinate system which was introduced

by Thompson, Thames and Mastin [4_. The integration of the

FA method and the boundary fitted coordinate system

represents a new approach in solving a vortex shedding

phenomena behind an arbitrary body shape. More detail on the

boundary fitted coordinate system is discussed in Chapter 3.

The two dimensional incompressible Navier-Stokes

equations may be conveniently written in the stream function

and vortlclty form, because in this form one only has to

solve two unknowns -- vorticity _,_and stream function

Thus in the present study the Navler-Stokes equations in the
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stream function and vorticity form is numerically solved on

the boundary fitted coordinates for flows past an obstacle

of arbitrary shape body.

Chapter 5 describes the numerical procedures used in

this study. In Chapter 6 the flow around a circular

cylinder is predicted by the FA method with three different

boundary fitted coordinates. Experimental data and several

previous numerical investigations are compared with the FA

solution. Once the FA solution for flow around a circular

cylinder for the laminar range of Reynolds numbers is shown

to agree well with the previous experimental data, flows

past other shape body can be solved in the same way. In

Chapter 7 two problems are considered. The first is the flow

past a two dimensional triangle column with vertex facing

the incoming flow. The second is the flow past a two

dimensional complex irregular shape body. Conclusions of

the present study and suggestions for the further work are

given in Chapter 8.
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CHAPTERII

PRINCIPLE OF THE FINITE

ANALYTIC NUMERICAL METHOD

The basic idea of the FA method is the incorporation of

analytic solutions in obtaining the numerical solutions of

partial differential ec@/ations. To illustrate the basic

principle of the FA method we consider a partial

differential equation (PDE) L¢ =f. Where L is a linear or

nonlinear partial differential operator and f is an

inhomogeneous term that depends on the independent

variables, such as x, y and t. The PDE is to be numerically

solved with proper boundary and initial conditions. In the

FA method the problem is first subdivided into small

elements. For example, a typical local element in a given

time interval _t=tk-t k-I is shown in Fig. 2-1 where a node

P(i,j) at given time t k or t k-I are surrounded by

neighboring node points EC(east center), WC(west center),

SC(south center), NC(north center), NE(northeast),

NW(northwest), SE(southeast), and SW(southwest), which also

correspond to points (i÷l,j), (i-l,j), (i,j-1), (i,j÷l),

(i_l,j÷l), (i-1,]÷l), (i÷l,J-l) and (i-l,]-l) respectlvely.

Once the problem is subdivided into small elements,
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an analytic solution for the PDE in each element may be

obtained.

In case when the PDE is nonlinear, such as Navier-

Stokes equations, the nonlinear equation may be locally

linearized in the element. In this fashion the overall

nonlinear effect can still be approximately preserved by

assembly of local analytic solutions. For example, we

consider the incompressible two dimensional Nacier-Stokes

equations cast in the dimensionless stream function and

vorticity formulation.

Re( _U_x+V_y )- ( _xx ÷ ayy)=O (2-1)
2

_'_=-_ (2-2)

U=_y , V=- _x , _=Vx-Uy (2-3)

Here space and time variables x, y, t are dimensionless

and normalized by a reference length quanity of L and a

reference time quanity of L/U 0. The velocity U, V are

normalized by the reference velocity U Re is Reynolds

number or LU0/v. To linearize Navier-Stokes equations in an

element we may let

U=Up+u', V=Vp+v', 2A=ReUp, 2B=ReVp (2-4)

where Up and Vp are the velocity components at node P (see

Fig. 2-1) and u' and v' are respectively the deviation of

the velocity components in the element from those at node P.

In general they are small if the element is reasonably small

but can become significant when multiplied by large value of
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Reynolds number. Eq.(2-1) under this approximation can be

written as

2A_ x+2B_y-_xx-wyy "-Re(u'wx+v'wy+wt)=f (2-5)

If the right hand side f is considered approximately to

be a known value f from the solution at previous time t k ,
P

then a simple analytic solution can be obtained for Eq.(2-5)

at time tk when proper element boundary conditions are

specified or

_F(_n(X),_s(X),_e(y),_w(y), h,k,x,y,t,fp) (2-6)

where _n' _ ' e and e are, respectively, the northern,s e w

southern, eastern and western boundary condition for the

element 2hx2k at tk.

For the numerical purpose the boundary conditions en,

_s,_e and ew may be specified in terms of nodal values along

the bonudary (see Fig. 2-1), e.g., _s-G(_se,_sc,_sw,X).

Substituting of the boundary condition into Eq.(2-6) and

evaluating it at the point P(i,j) at time t one has the

finite analytic formula for the interior nodal _p as

-C _ +C _ +C +C f (2-7)
_p ec ec+Cwc_wc + ...... sw sw sense p p

Here C's are known analytic coefficients multiplying

the corresponding boundary nodal values _ec etc. and the

particular solution f p representing the right hand side of

Eq.(2-5). The system of finite analytic algebraic equations

thus generated for all elements can be solved with proper

boundary condition of the problem to provide FA solution for

vorticity distribution.
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The treatment of unsteaty term and perturbed convection

term in Eq.(2-5) can be achieved as follow:

k k-i

= P P
et At

(2-8)

f =-Re(u'_ -v'e ,)
p X y

=-Re ( (Uec-Up)_ec- (Uwc-U p) _wc )/4h

-Re ( (Vnc-V p)enc- (Vsc-Vp) _sc )/4k (2-9)

Substituting Eqs. (2-8) and (2-9) for fp in Eq.(2-7)

one has

k= (_ ,C _k-c fk_!+CpRe_k-i _ReC
p n=l n n p p At )/(i+ L'L )

(2-10)

where n denotes the boundary nodes NE, EC, ...... etc.

Similarly, Eq.(2-2) for stream function can be solved

likewise by deriving the corresponding finite analytic

representation with proper boundary conditions. For velocity

components U and V one may derive from Eq.(2-3) directly,

once the local analytic solution of stream function is

known. Because the local analytic solution is differentiable

up to the order of the PDE, so the derivatives of the _ at P

can be expressed as

! t

-V=(_x )p=Cne _ne+Cse

tl N

U-(_y)p-Cne _ne+Cse

+ ........ +C 'f
se p p (2-11)

+ ........ +c "f (2-12)
se p p

!

Here the known analytic coefficients (Cne etc. and

" etc ) multiply the neighboring nodal values _ne Sse'Cne "

....... etc. Alternatively, if one prefers, the velocity

components U and V of Eq.(2-3) can also be derived with
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finite difference approximation. More detail of derivation

of these finite analytic algebraic equations is given in

Appendix A.



ii

CHAPTERIII

THE BOUNDARYFITTED COORDINATE SYSTEM

The boundary fitted coordinate transformation was first

presented by Thompson, Thames and Mastin 14]. Afterwards,

many researches [6,7] have been devoted to the development

of the techniques necessary for numerically generating

boundaly fitted coordinate system. Since the mathematical

development and numerical implementation of these techniques

is given in great detail by Thames 15], only overview is

presented here.

The basic idea of the boundary fitted coordinate system

is to generate a curvilinear coordinate system which has

coordinate lines coincident with all the boundaries of a

general multiply-connected region including the boundaries

formed by solid walls and the external boundaries, which may

be physically present or mathematically chosen to envelope

the computational domain as shown in Fig. 3-I and Fig. 3-2.

Thus, on the transformed plane the numerical solution of the

governing equations may be obtained on a fixed simple

rectangular field without variation of the mesh size.

Further, no interpolation of the boundary variables is

required regardless of the shape of the physical
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boundaries or the spacing of the curvilinear coordinate

lines in the physical plane.

For example, consider a two dimensional doubly

connected region shown in Fig. 3-1. The general

transformation is one which associates each point(x,y) in

the physical plane with a corresponding point(_,n) in the

transformed plane. Let the inner boundary of a physical body

is presented by the closed contour F l, and the 'C-type'

outer boundary representing the desired external boundary of

the computational domain is devoted by the contour F 3 and

the downstream boundaries F 2 and F 4. For convenience in the

transformation a cut in the physical plane can be made along

the contours F 5 and F 6. In this configuration (Fig. 3-1)

_= _lon the transformed plane may be identified with the

contours F5, F 1 and F 6, and _---_2 with the contour F3._ on

the transformed plane may be made to vary monotonically from

r

£= _i °n F2 to _= _2on F 4 . Then the contour F 1 in the

physical plane maps to the contour F 1 in the transformed

plane, F 2 maps to F 2 etc. Since the value of rl is constant

along the contours F 5 , F1 and F 6 , these contours must

represent a line of constant n in the transformed plane.

Also the cut made in the physical plane along the contours

F 5and F6is represented by the reentrant segments F5

F 6 in the transformed plane.

and
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Now _ and n have been completely specified on all the

boundaries of a closed field. It remains to define the

values in the interior of the field in terms of these

boundary values. This implies that elliptic partial

differential equations can be used to generate the field

points since the solution of an elliptic partial

differential equation is completely defined in the interior

of a region by its values on the boundaries of that region.

However the elliptic system chosen must exhibit certain

maximum principle which precludes the occurrence of extrema

in the interior of the region and assures that a one-to-one

correspondence exists between the physical and the

transformed plane.

The elliptic system used to generate the boundary

fitted coordinate system on the physical plane in this study

is given by

_xx+_yy=-P (6 ,q) (3- la)

qxx+qyy=-Q (_ ,q) (3- ib)

Subject to the following Dirichlet boundary conditions

T]

C1 (x,Y)

ql(x,Y)

_2 (x,Y)

q2 (x,Y)

(x,y)EF 1 (3-2a)

(x,y)EF 3 (3-2b)

where P(_,n) and Q(_,n) are the attraction functions for

the _ and q lines respectively. When P=Q=O t}:e Eq.(3-1) is
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Laplace equation which inaeed assures that a one-to-one

correspondence exists between the physical and the

transformed plane because of the characteristics of the

maximum principle (see Fig. 3-3). If P or Q are non-zero

values Eq. (3-1) i _. _oisson equation, the source terms P or Q

can be used for coordinate control to locate the lines of

constant _ or _I toward either the inner boundary or external

boundary creating a dense grid r._esh in the physical plane

(see Fig. 3-4). Thus, there are many ways of choosing the

functions of P and Q {13,14, 15] to get a desired shape in

the physical plane. Here, we use the form suggested by

Thames [5] .

n _(x'Y)-_k -Ck I_ (x'Y)-_k (3-3a)

P(_,n)=-l=iA):_(x,y)-_,k[ e

n' _(x'_)-nk -Ckln (x'y)-nk (3-3b)
AI ,i

Q(_,n):-_= 1 _n(x,y)_Dk I e

where n(n') is the number of attraction _-lines(r]-lines)

to be affected, Ak(Ak' ) is the amplitude factor, Ck(Ck') is

the decay factor, and ,_(x,y)(r1(x,y)) are the concentrative

lines. Bor detail, reader is referred to Thames's paper [5}.

Since it is desired that all numerlcal computations be

performed i:_ the tYansformed plane with sJ ple qrid size A r

and .\'I. Eq.(3-1) is cumbersome to use. It is more convenient

that the independent and dependent variables of Eq. (3-1) are

interchanged. In _he transformed plane the generating system
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Eq.(3-1) may be rewritten as, after interchange of

independent (x,y) and dependent (<,n) variables,

2

_x_-2Sx_q+yx n=-J (x_P+xqQ)

=-j2(y_P+ynQ)_Y_<-2BY_+YYqn

with the transformed boundary conditions

x

Y

x

Y

igl(<,n2 )
=!

!g2 (_' _'2)

(3-4a)

(3-4b)

(<,._I)EFI (3-5a)

r ET (3-5b)
('_'n2) 2

where _, !_, ] , J are the formations providing

relationships between the physical and transformed plane

(see Appendix B).

The functions fl(<,hl), f2(<,lll), gl(<,q2) and g2(_,q2)

are specified by the known shape of the contours F l and F 3

respectively, and the specified < distribution thereon.

Although it is more difficulty to solve the system of

quasi-linear partial differential equations Eq. (3-_) than to

solve the original equations Eq.(3-l), the boundary

conditions Eq. (3-5) are much easily specified along straight

boundaries in the transformed plane. Also, slnce the

computation of flow problem is first to be performed on the

boundary fitted coordinate system it is desired that the

transformed line spacing is uniform. That is one prefers to

set _,< = .\,i:constant. Therefore, solving Eq.(3-4) with equal
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spacing A_ and A_, one has regular grids on (_,q) plane and

irregular space in (x,y) plane. From previous works it seems

to produce more advantages in using the boundary fitted

coordinate system than the disadvantage it brings.

Eq.(3-4) can now be solved either by FD or FA method

when the partial differential equations are approximated by

a set of algebraic equations. The resulting set of

simultaneous algebraic equations are thus solved to provide

some coordinate relations between physical(x,y) plane and

transformed(_,_) plane. For fixed boundary location the

computation needs to be carried out only once.

It should be pointed out here that it is important to

have an accurate solution in the coordinate transformation

and evaluation of coefficients e, 8, 7 and J in Eq.(3-4).

Inaccurate evaluation of these coefficients will add the

errors to the numerical solution of the original problem.

Indeed, this is the main disadvantage in using boundary

fitted coordinate system. In this study two types of

boundary fitted coordinate systems (Fig. 3-1 and Fig. 3-2)

are investigated and compared.
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CHAPTER IV

FORMULATION OF PROBLEM

4.1 O__oxer_in_ Eguati o_

In this study a two dimensional uniform flow over an

arbitrary two dimensional obstacle is considered. The fluid

is assumed to be incompressible with constant properties.

The governing Navier-Stokes equations for two dimensional

problem may be written in two formulations -- one with

primitive equation and the other with stream function and

vorticity form. Since the present study is only confined to

the two dimensional problem, it is more advantageous to

choose the stream function and vorticity formulation. The

reason is there are only two equations for two unknowns --

vorticity _ and stream functlon _ , while there are three

equations for three primitive variables U, V and P in the

primitive formulation.

The incompressible Navier-Stokes equations written in

the stream function and vorticity form are

_t÷_y_x-'_x_y=(_xx+_yy)/Re

where ,

from the continuity equation and the × and y velocity

(4-1a)

_xx+_yy =-w (4-1b)

is the nondimensional stream function defined
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components are related to the stream function as U=$y and

V=-_X when the nondimensional vorticity _ is defined as

Eq.(4-1b). The reference length scale L used in

ncrmalization is the maximum width ef the body, and the

reference velocity scale U 0 is the uniform approaching

velocity specified at the upstream boundary. Thus, the

dimensionless stream function _, is normalized by U0L while

the dimensionless vorticity _ i_ by U0/L. Re in Eq. (4-1a)

is the Reynolds number U0L _, , where v is the constant

viscosity coefficient of the fluid.

4_ _ Bound@r__ _Condi_.i on s

Fig. 4-1 and Fig. 4-2 are two general types of

computational domain we use in this study. The approximate

boundary conditions for stream function and vorticity are

derived as the following:

4.2.1 The body surface

Since there is no slip on the body surface and the body

_s impermeable so Vt =0, V =0 where Vt is the tanqentlal' II

velocity along the body surface, V is the normal veloclty

on the body, then

_=constant and _'-_Vt/_n (4-2a)

where _,, and _, are the stream function and vorticity

value on the body surface, n is the outward direction normal
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to the body surface. To simplify this study, we only select

the symmetrical obstacle and put it at the center of the

computational domain as shown in Fig. 4-1 and Fig. 4-2, say

_=0. Strictly speaking, at the case while a periodic wake

and staggered vortex street is formed, the stream function

on the body surface no longer the fixed zero value (it is

the value depends on the time). Since this change is

difficult to figure it out and small, we still use $=0 on

the body surface at each different time step.

4.2.2 The upstream boundary

Since the approaching flow is taken to be a two

dimensional uniform flow, then U=I, V=0. Integrating the

U= _y, V=- _x and setting the approaching stream function at

the center line to be zero we have

=U,y=y ' _ = _V ___U=0 (4-2b)
_x _y

4.2.3 The upper and lower boundaries

As shown in Fig. 4-1 and Fig. 4-2 the distance from the

center line to the upper or lower boundary is taken to be

six times of the reference length (here, the reference

length is the diameter of the circular cylinder). That this

domain is assumed far enough to maintain U=I, V=0 on the

upper and lower boundary, therefore

_, =6 _ =0 on the upper boundary

=-6 _ =0 on the lower boundary (4-2c)
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4.2.4 The downstream boundary

As shown in Fig. 4-1 the downstream boundary behind the

center of circular cylinder is taken to be a long distance.

It is reasonable to assume that the condition posed at this

boundary has minimum effect on the vortex shedding behind

the cylinder. Therefore, the boundary condition is taken to

be U=I, V=O on the downstream boundary to preserve the

continuity of mass flow. In other words the stream function

and vorticity are set as

=y, _ =0 (4-2d-I)

Alternatively, as shown in Fig. 4-2, if the distance

from the downstream boundary to the center of circular

cylinder is taken to be a short distance, some cares must be

exercised in posing the boundary condition. In this case

the boundary condition on the downstream boundary is taken

to be the value on the grid line before the downstream

boundary at the previous time step or

t t-I t t-i
_n _n-l' _n=Wn-l (4-2d-2)

where the superscript t, t-I denotes the time step, and

the subscript n, n-1 denotes respectively the grid line on

the downstream boundary and the one grid line before the

downstream boundary.
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4.3 In The Transformed Plane

The governing equations and boundary conditions posed

up to now are all in the physical plane, however, it is

desired that all numeri=al computations be performed in the

transformed plane. Thus, the transformation relationships

in the Appendix B can be used to transform Eq.(4-1) to

Eq.(4-3) and Eq.(4-2) to Eq.(4-4). The followings are

governing equations Eq.(4-3) in the transformed plane.

+ow +T_r)/j2Re (4-3a)_t+(_-_l/J=(_::-28w_q+',_

where ,_, i<, i, e, _ and J are the transformation

relationships listed in the Appendix B.

The boundary conditions Eq.(4-4) in the transformed

plane become

=0

_=y

_=6

=-6

=y

= T-_nn on the body surface (4-4a)
%J

_=0 on the upstream boundary (4-4b)

_=0 on the upper boundary

,.a=O on the lower boundary (4-4c)

_=0 on the downstream boundary (4-4d-I)

t t-i t t-I

or _n-_n_l _n-_n_l on the downstream boundary (4-4d-2)

It should be remarked here that the vorticity values on

the body surface _--_n are not known, because numerical

evaluation of _ requires the internal points of _ ,
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several possible ways of computing vorticity boundary

condition are discussed in Chapter 6.

Before the FA numerical method is implimented to solve

Eq.(4-3) in the transformed plane (in Chapter 6), Eq.(4-3)

can be rearranged in the suitable form which we had obtained

an algebraic equation in the Appendix A or

_+C_nn-2BC_-2A_=f

where A=(_ JRe-T)/2m; B=(-_JRe-_)/2y;

f= (_t J2Re+28_)/e.

_+C'_q -2B'C'_ -2A'_.=f'n q %

where A'=-_/2e; B'_-a/27; C'=y/e;

f'=(28_ -J2_)/e.

(4-5a)

C=y/_:

(4-5b)



CHAPTERV

PROCEDUREOF NUMERICAL SOLUTION

In this study there are two major parts in the

numerical procedures to obtain the final numerical result.

The first one is the generation of the boundary fitted

coordinate system. The second one is the FA numerical

solution of the governing equation Eq.(4-3) with boundary

conditions Eq.(_-4) in the boundary fitted coordinates.

Details of numerical procedures are described below.

27

5.1 Boundary Fitted Coordinate System

In deciding a boundary fitted coordinate system for a

particular problem, one should know which region of physical

plane needs special attention, where detail and accurate

result are desired then more dense discritization nodes

should be placed. In this study we are especially intrested

in examing the vortex shedding phenomena behind an obstacle,

where the flow variations are expected to be most drastic.

Therefore, the grid size for the region near the body

surface and behind the body should be smaller than other

parts to provide sufficient resolution of flow variables to

capture the real character of flow. And the grid size in
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other region may be a bit coarser to save computational time

and storage and not to influence the accurate of solution

To satisfy these requirements, we choose a 'C-type' outer

boundary firstly as shown in Fig. 4-1 as the base for

generating the boundary fitted coordinate system. In order

to obtain accurate solutions at any given time, one _zust

compute accurately the vorticity boundary values on the body

surface at each time instance. Since for an arbitrary body

shape the 'C-type' boundary fitted coordinate (Fig. 3-1)

does not provide accurate evaluations of vorticity boundary

values, because of nonorthogonal behavior of the

coordinates, another 'OC-type' boundary fitted coordinate

(Fig. 3-2) which provides nearly orthogona, coordinates and

more accurate vorticity boundary values then was used. The

flow chart for generating the boundary fitted coordinate

system through Eqs.(3-4) to (3-5) is outlined in the Table

5-1.

The computation of attraction function P and Q are

accomplished under computer code FUNCTION CONQ(I,JI,J2).

Where I is the concentration line. J(Jl_J2) is the number

of attraction line, Ak is the amplitude factor and C k is the

decay factor (see Eq.(3-3)). The flow chart for FUNCTION

CONQ is shown in the Table 5-2.

Details of the computer program are listed in the

Appendix D.



OF PO0_ Q;,J_Li'I"Y
29

E
qJ

r_

q)

C
.,-4
"0

0
0

,-_

-,-I

c:

0

u,4
0

r_
.c:
U

0
,.--4

,--I
!

,.-..I

E-,

C
0

.,u

C

OI
Z

0 0
•,'_ f.D

rO °Z

_.o I,.,4

0

0

C_J
O_

• ._CC

•-_ 0

_3 _OC

0 (_'0_

_-_ _

C _ C _c"

i¸'/

oo I_

,'_ :_ _ I
0,._ .Co_

> _ .,-.( ,

oo_o 1

_ '_-_

C _,'_ C.,._ _

C_
0

_J,3
_0

C
0

0
I_'_.,_

0._

_0
0

OC

>_

0 0._

0 -
•..4- _::
.u EO E) -

_- Q; c

C _ Q;

_a 0
_J C_3 C

C

> O_ C
_-_

c

_-.-H

J.J

_J
C _n
Q; |

_d 5
,1_ 0 Ul
_.,-_

_) ._ II II II

= 0

_.4 -

%1
:3 .-4 II II II



Table 5-2

ORIGINAL _;"_.<:Y "'"
OF POOR _;,J',:,:__'Y

Flow Chart of Concentration Values P & Q

30

-Set values of

Ak and C k.
I IJ=J1,J2 - -------[ i

SIG= (I-J) / I-J!

CON=exp (-Ck; I-J _ ) .

ISUM=SUM-Ak*SIG*CON _

?

!If J=J2 '_-- -no--
t

yes

IReturn P(I) or Q(J)'I
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5.2 The FA Numerical

Solution In The Transformed

Plane

Since the governing equation Eq.(4-3) in the

transformed plane is a unsteady problem, the computational

procedure must march with time. The numerical calculation

starts with the establishment of initial values of _, _,

everywhere, at time t=O. As pointed out earlier we are

interested in the establishment of vortex shedding phenomena

for uniform flow over the obstacle. Therefore, the initial

condition in the computational domain can be arbitrarily

chosen. In the present study the potential flow solution for_

and zero vorticity is chosen to be the initial condition at

the first calculation of problem at Reynplds number of 5.

Physic%fly, it means that initially the fluid is assumed to

be inviscid and is moving passing the body with a uniform

velocity U In the later calculation for higher Reynolds

numbers, it is decided to use the results of _ and _ at the

lower Reynolds number which has been solved as the initial

condition at time t=0. Physically, it means that the

approaching uniform velocity over the obstacle is suddenly

increased.

After the initial values of _ and _ are specified, the

computational procedure begins with calculation of new

vorticity boundary condition on the body surface from

Eq.(4-4a) at k+Ith time step. Theoretically, _ should
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depend on the new values of _ at the same k+Ith time step,

but in the iterative procedure the known values of _ are

only at previous kth time step. Several possible ways of

approximately calculating _ for the k+Ith time step are

discussed in Chapter 6.

The next step in the computation is to use a line-by-

line iterative method to solve the vorticity transport

equation Eq.(4-5a), which is cast into the form given in

Eq.(2-10), for all interior nodes of the problem. The new

values of are calculated at a new k+Ith time level. When

is solved a line-by-line iterative method is again used to

solve Eq.(4-5b) for new values of stream function _ at k+Ith

time step with new vorticity values at k+Ith time step. Then

the computational cycle for one time step is completed. The

same procedure is repeated until the desired time is

reached. Schematically, the computational procedure is

illustrated in the Table 5-3.

The equations for SUBROUTINE COEFF is given in Appendix

A from Eq.(A-12) to Eq.(A-20). The program COEFF is listed

in Appendix D.

Both the potential flow program which provides the

initial guess of _ in calculating Re=5, and the unsteady

prog::am for higher Re are listed in Appendix D.
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All the above numerical procedures are excuted in the

transformed plane. After obtaining the numerical results,

one should be able to graph them back in the physical plane

where the real pictures of the flow pattern are obtained.

The numerical method to accomplish this requirement is shown

in Appendix C, and computer program is listed in Appendix D.
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CHAPTER V I

FLOW AROUND A CIRCULAR CYLINDER

6.1 Phenomenan of Vortex Shedding

The problem of the viscous flow around a circular

cylinder is a classical one. There are a large number of

experimental results. From these available results, the flow

pattern at different Reynolds numbers are summarized by

Blevins (161 as shown in Fig. 6-1. At very low Reynolds

numbers based on cylinder diameter (Re<5), the flow around

the cylinder is steady and does not separate and basically

is a Stokes type flow. As Re is increased (5<Re<40), a pair

of vortices is formed immediately behind the cylinder but

the vortices are steady and stationary. As Re is further

increased (40<Re<150), the vortices elongate until one of

the vortices breaks away and a periodic wake and staggered

vortex street is formed. The vortex street is known as

Karman vortex street. Von Karman [171 is the first one to

study the stability of vortex pair formed far behind the

obstacle and predicted the stable pattern is a staggered

pattern. Up to the Reynolds number of 150 the vortex street

is laminar. At a Re of 300 the vortex street becomes

turbulent and it degenerates into fully turbulent flow
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Re<5 Regime of unseparated flow.

5 to 15_Re<40 A fixed pair of foppl
vortices in wake.

--_ 0
40{Re<90 and 904Re<150

Two regimes in _,hich vortex
street is laminar.

1504Re<300 Transition range to
turbulence in vortex.

5
300(Re_3x10 Vortex street is

fully turbulent.

5 063x10 _Re<3.5xl

Laminar boundary layer has

undergone turbulent transition
and wake is narrower and

disorganized.

3.5x106_Re

Re-establishment of turbu-

lent vortex street.

Fig. 6-1 Regimes of fluid flow across

circular cylinders.
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beyond approximately 50 diameters downstream of the

cylinder. The range of Re from 300 to approximately 3x10 5

has been called the subcritical range where the vortex

shedding occurs at a well defined frequency. At the

transition range of 3xlO5<Re<3.5xlO 6 the flow separation

point moves backwards, the vortex shedding is thus

disorganized (with a broad band of shedding frequencies),

and the cylinder drag drops sharply. At higher,

supercritical range Re>3.SxlO 6 the vortex street re-

establishes itself.

Observing the flow pattern described above for

different Reynolds numbers, it is obvious that in the

present study of laminar vortex shedding, the Reynolds

number should be below 300. However, in order to examine

the proposed FA numerical solution it is decided to solve

Re=5, Re=40, Re=lO0, Re=500. The reason of computing

laminar solution at Re=500 is that one may want to know what

kind of the flow pattern one might obtain Jf the flow be

kept laminar at Re=500. In the future work some turbulence

models may be incorporated to see what's the difference does

it make at a high Re when the flow is laminar or turbulent.

For each different region the comparison of the predicted

separation points and Strouhal numbers with the experimental

results is made, even though at Re=500 the flow is turbulent
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6.2 Numerical Results at

C-type Outer Boundary

At C-type outer boundary (see Fig. 4-1), the

computational domain has 129x20 nodes with a far downstream

boundary and sufficiently dense grid matrix behind the

circular cylinder, then boundary condition Eq.(_-4d-l) was

chosen in this case. It should be remarked here the

vorticity boundary formular Eq.(4-4a) _=-T_2 was not
• _ nn

adapted in this case, because the _ lines have large

curvature around the circular surface (see Fig. 6-2a). Then

it is difficult using numerical method to evaluate the

transformed values of y/j2 accurately on the body surface,

where y=x_2+y_ 2, J1x_y -xny _. An alternative approach

was used to evaluate Eq.(4-4a) on the body surface. That is

to compute _ in the physical (x,y) plane directly, and these

vorticity values on the body surface is obtained from

_V t

Eq. (4-2a) w---_--_-, where Vt is the tangential velocity

along the body suface, and n is the outward direction normal

82

to the body suface. Since Vt= _ then 0j=-_, using
on

Taylor series expansion we obtained

2 (_w+l-_w) ±2 ! _n I n 3_=- 'An w +0 (A )
An 2

where subsript w means the wall value on the body surface.

However, -n_ w. 0 by the no-slip condition, thus

2 _w+ 1

_=-_ (6-1)
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Fig. 6-2 Small element
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where An is the distance from the w+l-th n line normal to

the body surface which is w-th _] line. Fig. 6-2b shows the

relative position of the following evaluations. Once the

values of _n I and fun2 are known, where

( &nl=_Xsl2+Ysl 2 -0.5, &n2=VXs22+Ys22 -0.5 )

one may calculate vorticity values at points sl' and s2'

from points sl and s2 by Eq.(6-1). The vorticity value at

point t can be obtained by interpolation between sl' and s2'

after finding the relations between @sl,0s2 and 0t,

- Yt
where esl=Tan I Ysl -i Ys_____2@t=Ta_l

Xsl' es2 =Tan Xs2' x--_"

With the known vorticity at points sl' and s2', the

approximate vorticity value at point t is

_t=_sl +@t-@sl (_s2 --w ) (6-2)
' @s2-@sl ' sl'

Followings are the FA numerical predictions of flow

over a circular cylinder with the C-type boundary fitted

coordinate system.

6.2.1 Potential Flow

Stream line of potential flow is shown in Fig. 6-3.

The solution shows that streamlines are not only symmetuical

with respect to the axial line but also with respect to the

upstream and downstream. Then solution of potential flow is

used as the initial guess for calculation of FA solution at

low Reynolds number Re=5.

A ..
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Fig. 6-3 Potential flow
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(b) Vorticity function

Fig. 6-4 Re=5
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6.2.2 Re=5

Fig. 6-4 shows the stream line and equal vortic_ty

value line at Re=5. The present FA solution predicts the

same flow pattern as predicted by theoretical analysis and

expremental measurement, which shows at this low Reynolds

number the flow is still stationary and does not separate.

6.2_3 Re=40

Fig. 6-5 gives the stream line and equal vorticity

value line at Re=40. At this Reynolds number the flow

separates and forms a pair of stationary vortices behind the

cylinder. The predicted length s of the region of closed

stream lines behind a circular cylinder with diameter d is

equal to 2.2d, which coincides with the experimental results

presented by Taneda [18! at Fig. 6-6, and the angle of

separation is about 55 , which also agrees with the others

results [19] at Fig. 6-7.

6.2.4 Re=lO0

Fig. 6-8 gives the periodic stream pattern at Re=lO0.

Fig. 6-9 is the equal vorticity value line at the

corresponding time step. Since the flow manifests a vortex

shedding, the flow must be considered no longer stationary.

Therefore, in the computation the time step size and

iteration error for each time step should be set carefully

to get an unsteady program. In this study we are interested
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Fig. _,-6 Observed lengths of the region of closed

streamlines behind a circular cylinder.

(From Taneda;1956)
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Fig. 6-7 Comparison between numerical calculations

and measurements. Numerical solution o, Jaime &

Thomas(1969) ; Q, Kawaguti & Jain(1966) ; • , Apelt

(1961) ; v , Kawaguti(1953) : _ , Thom(1928) . Measure-

ments: shaded area, with and without splitter plate.

(Ref. 19)



IBmm,..,.--.._,m_ ---

_4

04

C9

c4

" '< I_I
OF POOR k"d ILII'Y

(a) T-27.0

|

!

-2.0 0.0 .:.0 4.0 t; 0 '5.0 t_'.,"

\

tb) ']',,29.0

".O _-I.C', 16.0 :g.O

4%

0

C_

,q

C2

,-4
I

(c) T,,32.0

i

] 7 ; : i _ ' ]

-2.0 0.0 2.0 4.0 6.0 8.0 I0.0 I?..0 14.0 I_.0 19.0

X

(d) T-33.8

Ftq. _,-H Re-lO0 (Stream line)



CD

CD

CD

CD

I

-2.0

CD

ORIGINAL i:."_C,'. "_-_

OF POOR QUALhY

46

(a) T=27.0

×

(b) T=29.0

II I III I I IlI

=__ =

I I

• . . _ ' " 1_.0 t._ 0 l_ 0O.O 2 0 4 0 6.0 g 0 t_._ _ I_._ ....

X

(c) T=32.0



47

!

in finding whether the integration of the FA method and

boundry fitted coordinate system can be used to solve the

vortex shedding phenomena behind an arbitrary shape body and

whether an accurate numerical result can be obtained with

large time step At and few iterations at each time. In this

case, the time step size is At=O.2 and the maximum iteration

for each time step in solving stream function Eq.(4-5b) or

vorticity function Eq.(4-5a) is 20. If the absolute error

between two iteration is not larger than 10-6,then the

iteration is terminated automatically. Using the general

numerical procedure outlined in Table 5-2, the FA solution

predicts the separation angle at 0=64, which agrees with

results as shown in Fig. 6-7. A little lower 5trouhal number

S=0.15, as compared to experimental results _20] of 0.155

nnd 0.165, as shown in Fig. 6-10.

6.2.5 Re=500

Fig. 6-11 shows the prediction of the stream line in

one half period of vortex shedding at Re=5OO, and Fig. 6-12

is the vorticity distribution at the corresponding time

step. Although at Re=5OO the flow is turbulent, the

numerical procedure is the same as that for Re=100 except we

decrease the time step A t to 0.I and increase the maximum

number of iteration to 50 times. The FA solution for laminar

vortex shedding at Re=500 shows that the. separation angle is
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Fig. 6-10 The Strouhal-Reynolds n_unber relationship
for circular cylinders, (Ref.20)
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82.5 , which is in reasonable agreement with others

measurements shown in Fig. 6-7, while the predicted Strouhal

number S is 0.09, which is lower when compared with

experimental data in Fig. 6-10.

6.2.6 Discussion

It should be remarked first that the separation angle

is obtained from the zero vorticity value on the circular

cylinder surface. This is because the stream function on the

circular cylinder is zero at all time, and there is no other

indication of how the zero stream function line in the field

on the first r_- coordinate line above the circular surface

and that on circular surface can be connected. This seems

always to lead plot machine to distort the separation point

on the graph of stream line. On the other hand the

separation point based on the zero vorticity values on the

circular surface gives more consistent prediction. This is

because the vorticity values at wall can be defined as

_=-_Vt/_n, thus when the sign of the vorticity values at

wall changes between two wall nodes, it means there exists a

separation point there. An simple interpolation between

these two wall nodes gives the degree of separation angle.

The fact that the separation angle is predicted

satisfactorily by Eq.(6-2) on the body surface means the

proper distribution of vorticity values on the body surface
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is achieved. However, this method of evaluating vorticity

values on the body surface may become more difficult if the

obstacle has a complex shape, where accurate normal

direction is difficult to evaluate. Therefore, it is

desirable to have a boundary fitted coordinate system that

is almost orthogonal near the body surface, so that Eq.(6-1)

instead of Eq.(6-2) can be used. The 'OC-type' outer

boundary (see Fig. 4-2 and Fig. 6-15) adopted in the next

section provides a boundary fitted coordinate system which

is nearly orthogonal near the body surface.

Examing the predicted results for laminar flow at

Re=500, one realizes that the laminar model can't predict

the turbulent flow. A turbulence model must be added in the

governing equations in order to obtain the real flow pattern

in this case.

It should be mentioned that thirteen streamlines of

different increments ( _=_I.0, ±0.5, _0.2, tO.l, _0.05, _

0.02 and 0.00) are plotted in all the figures of stremline

in this study, while nineteen equal-vorticity lines ( _=

5.0, ±I.0, + 0.5, _ 0.2, _ 0.i, ± 0.05, _ 0.02, and 0.00) are

plotted in all the figures of vorticity function.

6.3 Numerical Results at

OC-t__e Outer Boundary

In setting up an OC-type boundary fitted coordinate

system (see Fig. 3-2) the computational domain was generated
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by combining an O-type coordinate system around the body and

a C-type coordinate system downstream of this O-type

coordinate. Two boundary fitted coordinate systems are

obtained as shown in Figs. 4-2 and 6-15. The former with a

wide but a short computational domain (12x32) is generated

with Laplace equation as the transformation equation, while

the later with a narrow but a long computational domain

(8x54) is generated with Poisson equation. In either case

lines arround the circular cylinder is almost normal to the

body surface, thus Eq.(6-1) is employed to evaluate the

vorticity values on the body surface. In order to examine

the effect of the boundary condition and the size of

computational domain on the solution, two sets of the

downstream boundary conditions are chosen. For the

coordinate system with 60x48 nodes (see Fig. 4-2) in 12x32

domain, downstream boundary is not far behind the circular

cylinder, thus Eq.(4-4d-2) was adapted as the boundary

conditions for the downstream boundary. For the coordinate

system with 38x41 nodes (see Fig. 6-15) in 8x54 domain, the

downstream boundary is much farther behind the circular

cylinder, thus Eq.(4-4d-l) instead of Eq.(4-_d-2) was used

as the downstream boundary conditions.
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Figs. 6-13 and 6-14 present the FA numerical solution

of the streamline and vorticity function for one half period

of vortex shedding at Re=lOO for the coordinates with a

short downstream boundary. The separation angle is

predicted to be 8 =68 and Strouhal number S=0.125 which are
s

worse than the results obtained in the last section.

Compare Figs 6-13 and 6-14 with Figs. 6-7 and 6-8 one sees

that there are some differences between these two results.

Using the same numerical procedures in section 6-2, the

numerical solutions were obtained at the second

computational domain (Fig. 6-15) for Reynolds numbers 5, 40,

and i00. Fig. 6-16 through Fig. 6-20 show all the FA

numerical results at this case. At Re=100, the separation

angle is now 66, and Strouhal number S=0.15. Compare with

the results in the last section, one can find much similar

between these two results.

6.3.1 Discussion

Before making the comparison of three numerical

results, let us designate the numerical results obtained on

the C-type boundary fitted coordinate as case I, the

numerical results on the OC-type boundary fitted coordinate

(Fig. 4-2) with 12x32 computational domain as case 2, and

the numerical results on the OC-type boundary fitted

coordinate with 8x54 computational domain as case 3.
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(1)Comparison of three numerical solutions for Reynolds

number of I00 (see Figs. 6-7, 6-13, and 6-19) shows that

case 2 gives the weakest vorticity strength and lowest

Strouhal number S=0.125, while the other two results show

the similar strength in vorticity value. The reason that

case 2 deviates from the other two cases is probably due to

the use of Eq.(4-4d-2) as the boundary condition on the

downstream boundary. The numerical results of the vortex

shedding for case 3 p]-esented in Figs. 6-19 and Figs. 6-20

illustrate the evaluation of the flow from the begining to a

stage of steady shedding. Comparison of the flow patterns

predicted in the three cases shows that it took a longer

time for case 2 to attend a steady shedding. This is due to

the use of the boundary condition of Eq.(4-4d-2) t t-i t t-I
_n=_n_l,en=_n_l

which tends to delay vortex shedding and as a consequence

the vortex grows much larger than it should be, behind the

circular cylinder. Thus, it is concluded that Eq.(4-4d-2)

is not a good boundary condition for the downstream

boundary.

(2)In case 3, although the computational domain is

narrower than the first two cases the predicted flow is

similar to that of case 1 for each corresponnding Reynolds

number. This implies that An order to predicting a vortex

shedding phenomena a large computational domain behind the

body is more important than top and bottom boundaries. In

L ..................................



?

I

69

the present study it suggests that a minimum distance of 50

diameters of circular cylinder is required.

(3)It is found that the separation angles predicted in the

three cases are the same and also agree well with the

experimental measurements. One thus may concluded that the

use of Eq.(6-1) as the boundary vorticity on the body

surface is adequate.
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CHAPTER VII

VORTEX SHEDDING BEHIND THE

NON CIRCULAR BODY SHAPE

In order to demonstrate the flexibility of the finite

analytic solution developed on the boundary fitted

coordinates in predicting flows over an arbitrary body

shape, the same numerical procedure developed in chapter 6

is used in this chapter to solve flows past a triangle

column and a compex arbitrary body shape.

7.1 Flow Over A Triangle Column

There are two reasons in solving the flow over a two

dimensional triangle column with the vertex facing the

incoming flow (see Fig. 7-1). The first is to demonstrate

that the boundary fitted coordinate system can be also

generated for a body with linear straight boundaries such as

a triangle shape. The second is that there seems no

previous numerical prediction of vortex shedding behind the

flow past a triangle column. The FA numerical solution will

represent a new result in vortex shedding phenomena.

The computational domain and geometry of isosceles

triangle is shown in Fig. 7-1 where the vertex of the

isosceles triangle is chosen to be a rlght angle. A total of
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20x35 nodes are used in the computation. Th_ downstream

boundary is set at a distance 23 times of the triangle base

width. Eq.(4-4d-l) is now used as the boundary condition of

the downstream boundary. The finite analytic solution is

obtained for Reynolds number of 200 with the potential flow

pattern as the initial condition. In this case, the time

step At is 0.2 and the maximun iteration for each time is

20.

Fig. 7-2 shows the potential flow pattern for the

inviscid flow past the isosceles triangle. The ripple show

in the figure is due to the plotter connecting the nodal

values between relative large grid size used in the present

calculation. Figs. 7-3 and 7-4 show the stream line and

vorticity function for Re=200 at different time interval

during a period of vortex shedding. The shedding frequency

or Strohaul number is found to be S=0.156. The Strohaul

number is only slightly lower than that of the experimental

measurement (S=0.18) [16]. Considering the coarse grid size

and few nodes used in the present calculation the prediction

is good.

7.2 Flow Over An Irregular Body__Shap_e

The computational domain shown in Fig. 7-5 is the same

as that shown in Fig. 6-15. The only change is that the

obstacle body, instead of a circular shape is an irregular
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arbitrary shape. The OC-type boundary fitted coordinate is

also shown in Fig. 7-5. The same boundary conditions and

same numerical procedures as those used in chapter 6 for

cylinder case are used here.

Fig. 7-6 shows the stream line pattern of the potential

flow over the irregular body shape. Fig. 7-7 shows the

stream line and vorticity function at Re=5. Like the flow

past a circular cylinder, the flow past the irregular body

at Re=5 is still stationary and does not separate. It seems

that the local irregularity in shape does not affect the

general flow pattern except near the boundary of the body.

Figs. 7-8 and 7-9 present the flow pattern at Re=40.

The FA solution predicts a major pair of stationary vortices

behind the body which reaches a stable size at a time

approximately T=5. A small vortices also appear at the

concave region of the body surface.

Figs. 7-10 and 7-11 show the evolution of streamline

and vorticity function at Re=lO0. Now the vortex pair can no

longer remain stationary and symmetric, and a vortex

shedding is [ormed behind the body. At the concave region

of the body surface there also exist a small vortices. The

Strohaul number S=O.II which is smaler than the case of flow

past a circular cylinder.
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CHAPTERVI I I

CONCLUSIONSAND SUGGESTIONS

In this study a FA numerical method in the boundary

fitted coordinate system is developed. This FA method is

implimented to solve two dimensional incompressible flows

past three obstacles of different body shapes.

As the first problem, the FA solution for flow past a

circular cylinder was obtained in chapter 6. The FA

solutions were obtained based on both the C-type and the OC-

t_pe boundary fitted coordinates so that use of different

coordinate type and different approximations to describe the

downstream boundary condition can be examined. It is found

that in order to predict properly the vortex shedding behind

the cylinder, the distance between the body and the

downstream boundary should be at least 50 cylinder diameters

before the approximation of uniform flow condition can be

used. Comparisons of the predicted results and other

numerical results and experimental data for Reynolds numbers

5, 40, I00, and 500 were made. Good agreements of the

separation angles for steady flow pattern at low Reynolds

numbers 5 and 40 were found. The predicted Strohaul number

at Re=f00 is 0.15 which is also close to the experimental
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value of 0.155 to 0.165. However, the predicted Strohaul

number at Re=500 is much lower than experimental data. The

reason of the discrepancy may be due to the flow is

turbulent at Re=500, while the prediction is made under

laminar flow assumption.

In chapter 7 the OC-type boundary fitted coordinate

system was adapted in solving the flow past a triangle body

at Re=200. Although in the computational domain both time

step and spatial grid were coarse, the predicted FA results

agree reasonably well with the experimental data. From the

success of FA solutions in predicting flows past a circular

cylinder and an isosceles triangle column, the FA solution

for flow past a more complex irregular body shape is

obtained to demonstrate the capabillty of the FA method and

the boundary fitted coordinates.

For the further work, improvements for adapting the

boundary fitted coordinate system in the finite analytic

method are suggested in the following:

(I) The governing Navier-Stokes equations Eq.(4-3) in the

transformed plane(6,_) are of elliptic type in space. The

appearance of the cross second deuivative term -2_r I or

-2_,_[_ in Eq.(4-3) complicates the solution procedure in

obtaining the analytic solution in an element. To simplify

Eq.(4-3) we can consider these two cross terms as known

values from the previous time step and put them at the right
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hand side as the inhomogeneous term as shown in Eq.(4-5).

Obviously, if the transformation parameter 8 which appears

in the cross term is small, this approximation creates

negligible error. However, if the values of 8 is of the

same or larger order than the values of the coefficients

or ¥ which appears in other second derivative terms in

Eq.(_-5), then the accurancy of the solution may be

affected. In order to minimize the error, one observed that

the coefficient _ vanishes if the transformed coordinate

lines _ and n on the original physical plane are locally

orthogonal. Therefore, it is suggested that the boundary

fitted coordinate system with nearly orthogonal grid lines

should be used when it is possible.

(2) It is found that the value of vorticity on the body

surface plays a major roll in obtaining an accurate solution

of the problem. This is because the evaluation of the

2

vorticity boundary condition, Eq.(_-4a) w=_/J _ , on the

boundary fitted coordinate creates a numerical difficulty,

since it is difficult to calculate accurately the

transformation parameters 7 and j2 on the body surface. In

this study the dlfficulty is circumvented by deriving an

alternative expression, Eq.(6-1), as the vorticity boundary

condition instead of Eq.(4-4a). In the future study a means

for accurate determination of 7 or j2 is to develop a

boundary fitted coordinate system that has extra coordinate



91

lines devised into the interior region of the solid body. In

this way one has an extra reference nodes for accurate

evaluation of coefficients ¥ and j2

(3) It should be remarked that the unknown vorticity

values on the body surface is in general a function of time

in the unsteady flow problem. In this study the boundary

vorticity values are determined as part of solution during

iteration. Although satisfactory results are obtained,

further accurate and simple way of predicting the boundary

vorticity values should be investigated in the future study.
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APPENDIX A

FINITE ANALYTIC SOLUTION OF TWO DIMENSIONAL

ELLIPTIC PARTIAL DIFFERENTIAL EQUATION

In this appendix the local finite analytic solution of

an elliptic partial differential equation Eq(A-la) with

constants A, B, C and f in a typical finite analytic element

(Fig 2-1) is derived.

_+C_Dq-2BC_q-2A¢_=f (A-la)

Eq(A-la) can be transformed into a homogeneous equation

Eq(A-ib) by letting _ =_+f(A_+Bq)

_h 2(A2+B2C)

then, _h_+C_hq -2BC_h -2A_h_=0 (A-lb)

In formulating the boundary conditions for Eq(A-ib),

we observed that Eq(A-ib) is an elliptic partial differential

equation with constant coefficients and contains only first

and second derivatives. Therefore, a constant, a linear

function (An-BC_) and an exponential function exp(2A_+2Bq),

satisy Eq(A-ib). These functions can be considered as natur_l

or basic modes of the solution form for Eq(A-ib) out of many

other possible forms. Thus, it is logical to utilize these

basic modes of the solution to form an approximating function

for boundary conditions. For example, we may set the northern

boundary condition of the Eq(A-ib) as shown in Fig 2-i to be
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_hN (_) =aN (e2A_-l) +bN_+CN
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A-2)

where the constants aN, b N and cN can be specified by the

three nodal values %hne' %hnc and Chnw on the northern

boundary that is:

%hnc = ¢hN (0 ) =c N

Chne = ChN (h) =a N (e2Ah-l) +bNh+c N

_hnw = #hN (-h) =a N (e -2Ah- i) -bNh+C N

(A-3a)

(A-3b)

(A-3c)

Solving above three equations we get CN=¢hnc,
]

bN=2-h( _hne- #hnw -COth (Ah) ( Chne + _hnw-2 ¢hnc) ) , and

aN= (Chne + Chnw- 2 #hnc )/4Sinh 2 (Ah) (A-4)

The nodal value _hne' #hnc and Chnw etc. in the original

variable ¢ are

+. f

_hne=_ne 2 (A2'+B2C_ Ah+Bk)

f

_hnc= _nc+ 2 (A2+B2c_Bk)

Chnw-- _nw + f
2 (A2+B2C_ -Ah+Bk ) (A-5)

The other boundary conditions for the south, east and

west sides (_hS(_), _hE(q) and _hW(q)) can be similarly

approximated.

In order to obtain a finite analytic solution of Eq

(A-ib) we may set Ch=_e A_+Bn so that Eq(A-ib) becomes
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¢_+CCqq- (A2+B2C) ¢=0

and boundary conditions are:

_^,(_) e-Bk(aNeA_+bN_e-A_ + -A_)• = (cN-a N) e

_S (_) -eBk (aseA_+bs _e-A_+ (CS-aS) e-A_)

CE (q) =e-Ah (aEeBn+bEqe-B_+ (cE-aE) e-B_)

#W (n )=e Ah (_4eB_ +bw_e-Bq + (CW-a W) e -Bn )

(A-6)

(A-7a)

(A-7b)

(A-7c)

(A-7d)

Eq(A-6) with its boundary conditions (A-7) can be solved

analytically by the method of separation of variables. Let

_=_1+_2+_3+_4 , where each function satisfies the above Eq(A-6)

and following boundary conditions

(i) _IN (_)--e-Bk (aNeA_+bN _e-A_+ (cN-aN) e-A_) ;

#IS(_)=0; ¢iE(q)=0; _IW(q)=0. (A-8a)

(2) ¢2S (_) =eBk (aseA_+bs_e-A_+ (CS-aS) e-A'_) ;

_2N(_)=0; #2E(q)=0; #2W(q)=0. (A-8b)

(3) _3E (q )-e-Ah (aEeBq+bEqe-B_ + (cE-aE) e-B_ ) ;

¢3N(_)=0; ¢3S(_)=0 ; #3w(q)=0. (A-8c)

•(4) _4W (q) =eAh (aweB_+bw _e-Bq+ (CW-aW) e-Bq) ;

_4N(_)=0; ¢4S(_)=0; ¢4E(q)=0. (A-Sd)

From method of separation of variables one finds the

series of eigenfunction satisfies those vanishing boundary

conditions in Eq(A-8) becomes

_l=;=iAlnSinh _n(q+k) Sin in(_+h)

_2=;=iA2nSinh Un(n-k) Sin In(_+h) (A-9b)

_=iA3nSinh ' (_+h) Sin l'(D+k) (A-9c)_3 = Un n
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!¢4 = =iA4n Sinh _n(_-h) Sin I' (n+k)n

where n_ _, n_ 2C+X2 0 5n=_, ,.n=_, _n =((A2+B )/C) "

(A-9d)

,-((A2+B2C+I,2C)0"5
Un- n , n=1,2,3,4 .......

The constants Aln, A2n, A3n and A4n can be respectively

determined from the no vanishing boundary conditions in Eq

(A-8). For example, the determination of Aln can be obtained

as follow: Setting Eq(A-9a) at =k, then

-Bk

¢I (_) =e (aNeA_+bN_e-A_+(cN-a N)e -A_)=;=IAlnSinh 2UnkSin(_+h) In

from the property of orthogonality of Fourier eigenfunction

we have

2 k lib e -BkAlnSinh Un =_ -h (aNeA_+bN_e-A_+(cN-aN)eA_)Sin Xn(_+h)d_

or

-Bk 1 1

e { n _,e-Ah neAh ,; n n .-%h
='-'6----aNA-_-+I'_" - (-i) + (CN-aN) 2 (eAh- (-i) eA2+X

n n

-Bk 2AX (eAh-(-l)ne-Ah) X h(eAh+(-l)ne -Ah)

+_.__{bN ( n n
2)2 A2+I 2 }

(A2+ln n

)}

Substitute the values of a N , b N and c N in Eq(A-4) into

the above equation then,

AlneBksinh 2U k =¢hne+chnw-2¢hnc
n 4Sinh2Ah

i h
n

(Ah) 2+ (_ nh )

_hne+¢ nw-2¢ X h
h_ hnc) , n

+ (_hnc- 4Sinh2Ah (Ah) 2+ (i nh )

2 (e-Ah- (-I) neAh)

2 (eAh- (-i) ne-Ah)



m

(e Ah- (- 1 ) ne-Ah ) I n h

_ (Ah) 2+ _ nh ) 2 (eAh+ (-I) ne-Ah) }

Now let n=2m-l, m_i,2,3,4 .........

m h

_ then, AlmeBksinh _mk=(Ah)2+(im h) 2{ _hnc(eAh+e -Ah)-(eAh-e-Ah)

_ _ hne- _ hnw-COth Ah (_ hne+¢ hnw-2¢ hnc )'}}+ (Ah) (I h)
( 2 m

-- (eAh+e-Ah) (_ -¢ -Coth Ah (_ hnw-2¢ )2 2.2 hne hnw hne +¢ hnc )

((Ah) +(Imh) )

_ Since _h=_e A_+_ (A-10)

leA_+BnzeA_+Bn_m " 'n+k) Sin k (_+h) (A-lla)then, ¢lh=¢ =iAlm Slnh Um m

Similarly _2h=e A_+Bn_zlA2mSinh _m(q-k) Sin Im(_+h)

_3h=eA_+Bn_m=iA3mSinh _m(_+h) Sin Im'(q+k)

4h=eA_+Bn_m=IA4mSinh Um(_-.h) Sin Im(n+k)

where lm=_, lm'_' and n=2m-l, m=i,2,3,4 ........

- ( (A2+B2C+I 2)/C) 0"5 ,= (A2+B2C+I, 2C) 0 "5
m m ' Um m

and Ch(_,q)=_lh+#2h+_3h+_4h, where #h is the solution of

Eq (A- ib).

(A-llb)

(A-llc)

(A-lld)

The finite analytic algebratic equation relating the

center node to the neighboring nodes ne, nc, nw, etc. may

be obtained by setting _-0 q=0 in Eq(A-II) to give

_h(0,0)'_lh(0,0)÷_2h(0,0)+_3h

where, for example

(0,0) +_4h (0,0)
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_lh(0'0)=_ iAlmSinh Umk Sin I h
-- m

and AlmeBksinh 2_mk=2AlmeBksinh pm k Cosh _m K

Combining these expressions we have

- (-I) ml h
m

_lh (0,0) =e-Bkm_ = 1 2 2 {_hnc (eAh+e-Ah)

2((Ah) +(lmh) )Cosh _m k

- (eAh_e_Ah) (_hne-_nw-C°th Ah (_hne÷_nw-2_hnc) ) }
2

- (-i) m (lmh) (Ah) (eAh+e_Ah)

+e-Bk_=12 ((Ah) 2+ (lmh) 2Cosh um k

or

(¢hne-%hnw-COth Ah (¢hne+_hnw-2¢hnc) )

A' C°sh2Ah'
$1h(0'0)=e-Bk((_ Osh Ah-21--Sinh Ah)El+(C°sh n-sinh _h'

Ah E2) Shne+e -Bk ((_osh Ah+21-Sinh Ah) E 1- (Cosh Ah

Cosh2Ah -Bk . 2Cosh2Ah_ ......
+Sinh Ah )Ah E2)$hnw +e (An Sinh Ah_2 )¢hnc(A-iza)

Similarly,

• Cosh2Ah,
¢2h(0,0)=eBk ((_osh Ah-_inh Ah) El+(Cosh An-sinh..Ah J

+e Bk (_osh Ah+_inh (Cosh Ah+Ab .E2)#hse ( Ah)E l-

C°sh2Ah_ (_h2C°sh2Ah- '
S_'nh Ah "Ah E2)$hsw +eBk''-" Sinh Ah_:2 '¢hsc

® -(-l)m(Im h)

where El=_m_ 1 2
((Ah)_+(Im h) )Cosh Umk

(A-12b)

® - (-l)m_ h

_ 2"Zm-1 " m
((Ah) 2+ (Irah) 2) 2Cosh Um k

(A-12c)
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1
¢3h(0'0)=e -Ah(_(Cosh Bk-Sinh Bk)Ei+(Cosh Bk -COsh2BkinhBk

Bk E_)_hne+e-Ah(_(Cosh Bk+Sinh Bk)Ei-(cosh Bk+

+e-Ah(_.2Cosh2Bk_.
)Bk E_)¢hs e sK Sinh Bk_2)¢hec

Cosh2Bk

Sinh Bk

¢4h(0,0)=eAh(½(Cosh Bk-Sinh Bk)Ei+(Cosh Bk -C°sh2BkSinh Bk )

Bk E_)_hnw+eAh(½(Ccsh Bk+Sinh Bk)Ei-(Cosh Bk+

(A-I 3a)

Cosh2Bk . 2Cosh2Bk ,.
Sinh Bk )Bk E2)_hsw +eAh(Bk Sinh BkE2 )¢hwc (A-13b)

where

- (-I)ml 'k

Ei=_m=l 2 2m
'h

((Bk) +(Xmk) )Cosh um

- (-l)m_ 'k
m

E'=_
2 m=l 2

'h((Bk) +(Xmk) 2)2Cosh u m

(A-13c)

Combining Eq(A-12) and Eq(A-13) we have

_h(0,0)=CneChne+Cnw_hnw+Cse_hse+CswChsw+CncChnc+Csc_hsc

+Cec_hec+Cwc_hwc

where Cne=e-Ah-Sk(½(El+Ei)-Ah Coth Ah E2-Sk Coth Bk

Cnw-eAh-Bk(½(El+Ei)-Ah Coth Ah E2-Bk Coth Bk E_)

Cse=e-Ah+Bk(_(El+Ei)-Ah Coth Ah E2-Bk Coth Bk E½)

Csw-eAh+Bk(_(El+Ei)-Ah Coth Ah E2-Bk Coth Bk E½)

-Bk , 2Cosh2Ah_ .eBkAh2COsh2Ah_
Cnc-e An Sinh Ah52 (A-15e) Csc Sinh Ah-2

2Cosh2Bk.
2Cosh2BkE .eAhBkCec'e-AhBk Sinh Bk ½ (A-15g) Cwc Sinh Bk _

(A-14)

(A-15b)

(A-15c)

(A-15d)

(A-15 f)

(A-15h)
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C +C +C +C +C +C +C +C =l (A-16)
ne nw se sw nc sc ec wc

Substituting Eq(A-15) into Eq(A-16) we have

2Cosh Ah Cosh Bk (El+E{)=1

or El+Ei-i/(2Cosh Ah Cosh Bk) (A-17)

Secondly, _h=An-BC_ is also a solution of Eq(A-ib), so

the boundary functions (A-4) should be a linear case, that is

aN=aS=aE=aW=0 or _hnc=0.5(_hne+¢hnw ) , Chsc=0.5(¢hsw+¢hse ) ,

_hec=0.5(_hne+¢hse ) , Chwc=0.5 !¢hnw+¢hsw ) .

and ¢hne=-BCh+Ak, _hnw-BCh+Ak, _se---BCh-Ak, ¢hsw=BCh-Ak,

_h(0,0)=0. Substituting these relations into Eq(A-14) we have

Ch2E2_k2E½ = BCh4ABTanhcoshAh-AkAhCoshTanhBkBk (A-18)

With relations (A-17) and (A-18) the computation of FA

coefficients in Eq(A-ib) requires only one series summation

that is either E 2 which given in Eq(A-12c) or E½ which given

in Eq(A-13c). Because the limitation of the present

computer in handling large exponential function, the summation

E 2 or E_ may become inaccurate when it contains a larger

value. In order to avoid this problem (note: with further

advance of computer technology this should not be a problem),

it is suggested that if C is greater than I, one should choose

element are set equal. In this case one has

The following relations can be used to simplify the

coefficients Cne, Cnw, Cse, ....... etc.

First, since h=constant is a solution of Eq(A-ib), Eq

(A-14)is still true for the case when all nodal values on the
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to calculate the series summation E½ firstly, then use rela-

tion (A-18) to obtain E 2. If C is less than 1 it is suggested

to compute the series summation E 2 firstly, and use relation

(A-18) to get E½. After the values of E 2 and E_ have been

obtained we define new relations for EA, EB and EC, where

_. _ Cosh2Ah ..... Cosh2Bk_,

EA=2Ansinh Ah E2; _'Z_KSinh Bk_2 ;

1

EC=4cosh Ah Cosh Bk - Ah Coth Ah E2-Bk Coth Bk E_

Then the finite analytic coefficients become

-Ah-BkEc ,eAh-BkEc -Ah+BkEc =eAh+BkEc.
Cne=e ; Cnw ; Cse=e ; Csw ,

=e-BkEA; Cs c=eBkEA; C =e-AhEB AhEB.Cnc ec ; Cwc=e (A-19

To obtain the finite analytic solution of Eq(A-la)

one simply substitute Eq(A-5) into Eq(A-'I4). However, slnce

_h(0,0)-_(0,0) we have the final FA algebratic equation for

the node at _-0 qiO as

(0,0 ) IC _ ÷Cnw _nw+C +Cne ne se _se+Csw_sw+Cnc Cnc sc _sc+Cec _ec

+Cwc ¢wc +C f f

1

where Of- 2(A 2 (Ah(Cne+C +C -C -C -C+B2C) ec se nw wc sw

+Bk (Cne+Cnc+Cnw-Cse-Csc-Csw) )

(A-20)

In other words Eq(A-20) is the FA algebratic represen-

tation of the partial differential equation (A-la) which

we used in this study.
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Next step we derive the finite analytic solution for

Eq.(A-la) in a finite analytic element.

From Eq.(A-lb) and Eq.(A-II) the finite analytic solution

for _h in the element can be written as ¢h=@i+_2+¢3+¢4

where, for example

@ eA_+Bn_
lh = m= iAlm Sinh u m (n+k) Sin k (_+h)

m

Taking the derivative of this equation one has

lh =AeA_+Bn _=iAlmSinh _m(n+k) Sin k (_+h)m

+e A_+Bn _m=iAlmSinh _m(n+k) kmCOS km(_+h)

¢lhn=Be A_+Bn _=IAlmSinh Um(n+k) Sin km(_+h)

+e_+Bn _ (n+k) Sin k (_+h)_ iAlm_m COsh Um m

¢lh£n-ABeA_+S'l _ilAlmSinh Um(n+k) Sin lm(_+h)

+Ae A_+Bn _m,,IAlm_mCosn Um(n+k) Sin km(%+h)

+Be A_+Bn _.iAlmS_nh Um(n +k) /taCos km({+h)

+e A_+Bn _=iAlmUmCOSh Um(n+k) kmCOS km(_+h)

(A-21a)

(K-21b)

(A-21c)

When these derivatives are evaluated at the interior node

P(0,0) we obtain

¢lh_(0,0)-A_lAlmSinh Um k Sin kmh+_.iAlmSinh pm k kmCOS kmh

_lh n

-ACl h (0,0) (A-22 a)

_m

(0,0)-B_iAlmSinh umk Sin /mh+_=iAlmUmCOSh Umk Sin kmh

-B_lh(0,0)+_=iAlmUmCOSh Umk Sin kmh
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Alm_mCOSh Umk=Um_lmeBksinh 2_mk/2eBksinh _m k

we have ¢
lh_

where
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- (-i) mXmh_m

GI= _m=l ((Ah) 2+ (imh) 2)Sin h Um k

- (-I) mlmh_m

G2=_=I((Ah) 2+(Imh)2)_Sinh _m k

(0,0)-BClh(0,0)+e-Bk((l(Cosh Ah-Sinh Ah)GI+

. Cosh2Ah, -Bk (l(cos h Ah(Cosh An-sinh AhlAh G2)_hne+e

+Sinh Ah)G 1 (Cosh _h+ C°sh2Ah_- "_" S inh Ah 'Ah G2_ Chnw +

-Bk. , 2Cosh2Ah_

e (An-sinh Ah_2 )¢hnc (A-22b)

n=2m-1, m=1,2,3,4 ............

_m=((A2+B2C+ m2)/C)0.5

Similarly, one may obtain from the finite analytic solution

of

¢2hn

Similarly,

¢3h_(0,0)=A¢3h(0,0)+e-Ah(½(CDsh

O2h as ¢2h_(0'0)=AO2h(0'0) (A-23a)

(0,0)=B¢2h(0,0)-eBk(21--(Cosh A_t-Sinh Ah)Gl+(Cosh Ah-

SinhC0Sh2AhlAhAh' G2) ¢hse -eBk (½(Cosh Ah+Sinh Ah) G I-

. Cosh2Ah. Bk .Ah2COsh2Ah,
(Cosh A/a+Si_h Ah)Ah G2)¢hsw-e { Sinh Ah;G2)¢hsc

(A-23b)

Bk-Sinh Bk)G{+(Cosh Bk-

Cosh2Bk. -Ah(l(cos h Bk+Sinh Bk)G 1Sinh Bk;Bk S_)¢hne+e '-

-. Cosh2Bk. -Ah Cosh2BkG,
(Cosh BK+Sinh Bk;Bk G_)¢hse+e (Bk2sinh 'Bk 2 )¢hec

(A-24a)
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- (-l)mlmkU m
G !

l=m = 1 2

((Bk)2+(Imk) )Sinh Um'h

- (-1)mlmk_ m
GI=

2 m=l((Bk)'2+(Xmk)2)2Sinh _m h

l,=nw
m 2-k' n=2m-l, m=i,2,3,4 ........

Um_(A2+B2C+I_2C)0 5

#3hn (0'0)=B¢3h(0'0) (A-24b)

$4h_(0'0)=A¢4h(0'0)-e Ah(½(Cosh Bk-Sinh Bk)G{+(Cosh Bk-

C°sh2Bk _Bk -e Ah
Sinh Bk' G½)¢hnw (l(Cosh Bk+Sinh Bk)G{-

(Cosh -" C°sh2Bk" eAh -" 2C°sh2Bk_'
SK+Sinh Bk)Bk G_)_hsw- (sK sinh Bk_2 )

_hwc

_4hq (0,0) =B¢4h (0,0)

(A-25a)

(A-25b)

then ¢h_ (0,0) =¢ih_ (0,0) +_2n_ (0,0) +_3h_ (0,0) +¢4h_ (0,0)

=A¢h(0,0)+(l(cosh Bk-Sinh Bk)G{+(Cosh Bk-

Cosh2Bk G_) (e-AhShneSinh Bk )sk -eAh_hnw)+(½(Cosh Bk+

Sinh Bk)G_-(Cosh Bk+_:_2_)Bk G_, (e-Ah_hs e-

- Ah 2Cosh2Bk , -Ah Ah

_hsw )+(Bk Sinh BkG2 ) (e _hec -e _hwc )

!
e

|
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@hn(O'O)'¢lhq(O'O)+¢2hn(O'O)+¢3hrl(O'O)+@4hn(O'O)

Ah C°sh2Ah)
-B_h(0,0)+(½(Cosh Ah-Sinh Ah)Gl+(Cosh -Sinh Ah

Bk@ ) ½(Cosh Ah+Sinh Ah)G l-Ah G 2) (e-Bk_hne-e hse + (

(Cosh -" C°_h2Ah" (e-Bk Bk
An+_i'nh Ah )Ah G 2) _hnw -e Chsw )+

.. 2Cosh2Ah_
(An Sinh AhU2 ) (e-BkChnc-eBk'_hsc) (A-27)

Using the following relations the series summation in

G 1 G 2 "[ ,, , G , Go can be simplified.

First, since %-constant is a solution of Eq. (A-Ib)

that all nodal values in the element must be the same constant,

and hence Ch<=0' _h,1=0" Then from Eq. (A-26) and Eq. (A-27)

we have A-2Cosh Bk Sinh Ah G_=0

B-2Cosh Ah Sinh Bk GI-0

A B
G (A-IS)

or G[=2sinh Ah Cosh Bk; l'_Sinh Bk' Cosh Ah

Secondly, @h=-BC_+A,_ is also a solution o_ Eq.(A-Ib),

so @h --BC, @hn-A. Substituting boundary functions into Eq.

(A-26) and Eq.(A-27) we have

1 (BC(I_Ah Cosh Ah) A2k Sinh Bk

G2"4ABk2Sinh Ah Cosh Bk Sinh Ah 4 Cosh B_ )

1 (A(I Bk Cosh Bk B'Ch Sinh Ah_
G2"4ABCh2Sinh Bk Cosh Ah Sinh Sk )÷ Cosh Ah

(A-29)

It sh( _ be remarked here, that one does not need any

series summer 3n tO calculate G l, G£, G 2 and C;_, hence,

the computational time involved in the evaluation of the



ORIGINh, L ;-9_,,,.; ,,,

OF pOOR QUP, LtIY
108

finite analytic coefficients for derivatives is indeed very

little.

• = f (A_+Bn) fA

Since #h,. _+2 9(A.+B.C))- , then _=¢h$- 2 (A2+B2C)

_d ¢$(0,0)=¢ih _(0,0)+¢2h _

fA

(0,0) +¢3h_ (0,0) +¢4h_ (0,0)-
2 (A2+B2C)

1
=ACh(0,0)+(_(Cosh Bk-Sinh Bk)Gi+(Cosh Bk -COsh2BkBk

, (e-Ah#hne_eAh 1Bk G 2) Chnw)+(_(Cosh Bk+Sinh Bk)G{-

(Cosh C°sh2Bk -Ah. eAh¢ ).
Bk+sinh Bk)Bk G½) (e @hse- hsw

Bk2COsh2BkG, fA
Sinh Bk 2) (e-Ah@hec-eAhChwc)-

2(A2+B2C)

(A-30)

Substituting Eq.(A-5) into Eq.(A-30) we have

CF,(0'0)'A@(0'0)+e -Bk(_G{-Bk Coth Bk G_) (e-AhCne-eAhCnw)

+eBk(21-G{-Bk Coth Bk G½)(e-AhCse-eA-hCsw)

+(eBk+e-Bk) (Bk COth Bk G_)(e-AhCec-eAhCwc)

' f {Ah (e-J_h+e A/n) (_3{ (eBk+e-Bk)) +Bk
2 (A2+B2C)

(eAh-e -Ah) (eBk-e -Bk) (_G{-Bk Coth Bk G½)-A}

or (0,0)-A¢(0,0)+C '¢ +C '¢ +C '¢ +CswCsw+CecCec'¢_ ne ne nw nw se se

+Cwc' Cwc+C f f (A-31)

and GA-_{-Bk Coth Bk G_; GB-(eBk+e-Bk) (Bk Coth Bk G½)

Cn_-e-Ah-BkGA; Cnw ; Cse =e ;
,._eAh-BkGA , -Ah+BkGA

Cs_.-eAh+BkGA; Ce_-e-AhGB; Cw_=-eAhGB;
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C_, 1
2 (A2+B2C) {Ah (eAh+e-Ah) (21-Gi(eBk+e-Bk))+Bk (eAh -e-Ah)

(eBk-e-Bk) (21-G_-Bk Coth Bk G_)-A} (A-32)

Similarly, ¢n (0'0)=B_(0'0)+Cne_ne+Cse#se+Cnw¢nw+Csw¢sw

and

+C "_ +C_"___+C"f (A-33)nc nc _ _

HA=21--GI-Ah Coth Ah G2; HB=(eAh+e -Ah) (Ah Coth Ah G2) ;

Cne =e-Ah-BkHA; Cse=-,, e-Ah+BkHA ,. Cnw=''eAh-BkHA,.

C sw =-" eAh+BkHA,- Cnc "-e-BkHB; C sc" =-eBkHB;

C"= - 1 {Bk(eBk+e-Bk) (_l(eAh+e-Ah)+Ah( Bk e-Bk)
f 2 (A2+B2C) e -

(eAh-e -Ah) (_l-Ah Coth Ah G2)-B} (A-34)

In an attempt to reduce computational time for evalu-

ation of FA coefficients, we found that the form of E 2 or

E_ in Eq. (A-12c) or Eq. (A-13c) is very close connected to

series summation of G 2 or G_ in Eq. (A-22b) or Eq. (A-24a).

After a comparison study between the series summation

of G 2 and E 2 or G_ and E_ (see Table A-l), it is found that

if A>I0 B>I0, there exist an approximate relation between E

and G 2 or E_ and G_, that is:

'~ ' Tanh ' ' (A-35)E2_-G2Tanh (Ulh/U I) ; E2-G 2 (ulk/u I) •

where UI=((A2+B2C+(_h) 2)/C)0.5;

[,. cA2÷s2c÷ 2c) o. s.

In Table A-I FAP means approximate FA method.
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APPENDIX B

RELATIONSHIPS BETWEEN PHYSICAL

AND TRANSFORMED PLANE

This appendix contains the pertient definitions and

relations between the physical (x,y) plane and transformed

(_,_) plane used in the present study. Basically the

relations and the notation used in Ref. [5] is retained

here. The function f(x,y,t) is defined as a twice

continuously differentiable scalar function of x,y and t and

the vector F(x,y)=F!(x,y)i+F2(x,y)] is a continuously

differentiable vector-valued function where i and j are the

conventional cartesian coordinate unit vectors.

It should be noted that all derivative transformations

given here are in the geometrically non-conservation form.

Definitions of the transformation relevent to the

present study are

slxn2+yn2 (B-l)

B1x _xn +Y _Yn (B- 2 )

y.x 2+y_ 2 (B-3)
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where J is the determinant of the Jacobian matrlx.

Derivative transformations for function f between

and (_,r,) coordinate are

112

(x,y)

fx = (_f/_x) Y, t= (Yn f_-Y_ fn)/J
(B-9)

fy= (af/@y) x,t_(x_ fn-×nf_)/J

fxx=(_2f/@x 2)y,t =(yq2f{ _2y_y nf_+y 2fnq)/j2

+(yn2 2 (xnf fn)/J3y_-2y_yny_n+Y_ ynn) _-x_

+ (yn2 2 ) f )/j3x_-2y_YnX_+Y_ xnn (Y_fn-Yn E,

2f/_x2)
x,t= (x_ 2f_-2x_xnf_n+x_2fnq)/J2

+(x 2 +x 2y_)y_-2x_x y_ (x f_-X_fn)/J

2 2 3

+(x x_-2x +x x ) (y f:)/J_xnx_r_ _ _fn-Y_

fxy =((x_y +xny_)f_n_x_y_fnn_xnynf_ )/J2

+(xnynx_- (X_Yn+XnY _) x_n+x_,y[xnn) (Ynf_-Y_f n)/J

+(xnyny_-(x_yn+xny _)y_n+x_y_y_n) (x[f

(B-10)

(B-] i)

(B-12)
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Vector Derivative Transformations for function f and F

Laplacian:

V2f-(sf_-28f_n+Yfnn)/J2+((ex_<-28x&n+_Xn_) (Y_fn-Ynf_)

+(sy_-2By_ +yynq) (xnf£-x_f_))/j 3 (B-14)

72f=(_f_&-28f_q+yfqq+Ofq+Tf_)/J2 (B-15)

Gradient:

qf=((yqf&-y_fq)i+(x_fn-Xnf <) j)/J
(B-16)

Divergence :

q'Fm(yq(Fl) _-Y_(Fl) n+x_(F2)n-xq(F2
):)/J (B-17)

Curl :

q xF-k (Yn (_2) _-Y_ (F2) q-x_ (FI) n+xq (FI) _)/J
(B-18)

Unit Tangent and Normal Vectors

No rma i to q-line

n (n)-Vq/IVnl- (-y_i+x_9)/V?
(B-19)

Normal to :_-line

n (_)-q_/IV _i=(yni-xnj)/ r_ (B-20)

Tangent to n-line

(n) (n)
t in X k=(x[i+y&j)/vY

(B-21)

Tangent to G-line

(_) (4)
t =n x k=- (xni÷ynj)/¢_

(B-22)
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F(n_)_,n (_) Tangent and Normal

(_) (_) *x¢_ )/,'7Ft _t

F(_) (_) "F=(X_Pl_Y_F2)/v _

" P,l (,.,

"Fa. (x F1
DireCtiOnal _ +Y_F2)/v_

Deri vati Yes :
af/a n (n)

• _f,, (yf

mn

a_/at: (¢),,_. (_;

and _? lines

(B-23)

(B-24)

(_-25)

(B-26)

(B-27)

(_-28)

(B-29)

(_'30)
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APPENDIX C

CONTOUR PLOT

This appendix presents the basic Idea of the methods

used to determine contour plots of a function defined on the

transformed plane, and graph it back on the physical plane.

Let us consider that _=¢(_,q) as shown in Fig. C-I is a

function defined on the tra_.sformed plane D , and that We

are interested in the contour curve of constant _ value say C($)

on the physical(x,y) plane, Graphically, C_¢}is the curve

created by the intersection of the surface _(_,q) and the

plane¢(_,q)=c For plotting convience" this contour curve is

usually projected onto the transformed(_,_) plane, then

one needs to creat a program to locate all pairs of the

nodes where this contour curve lies on the transformmed -

plane.

To accomplish this, let us consider a portlon of

computationaal region on D as shown in Fig C-2a where

I_II<I2_IMAX and I&JI<J2_JMAX. Here each grid block is

labeled by the (i,j) coordinate of the lower left hand

corner of the block. Let us assumed that a constant line

passes through the block (m,n) as shown on a large scale in

Fig. C-2b.
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Fiq. C-I Contour of _(_i,Dj)

j=J2

j=J1
i=II

(a)

(m,n+l) (m+l,n+l)

3 ./

rim,

i=I2 (re,n) _-(m+l,n)

{m,n

(b)

Fig. C-2 Simple grid in set D

Ul_ nm,

_m,n "l

qm,n

§

(I;- 3

_m_,n ' nm,n I (23, t.§4

(a) (b) (c) (d)

Fig. C-3 Local coordinate system

for triangle
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In order to obtain an accurated plot resolution, We

subdivid each block into four triangles, as shown. The value

of _ at (m+i/2,n+I/2) is taken as the four point average or

m+_,n+½ = (_m,n +#m+l,n +_m, n+l +_m+l, n+l)/4

At a grid block (m,n) as demonstrated In Fig C-2b the

interpolation procedures of standard form can be set up by

first placing a local coordinate (§,u) on each of the

subtriangles as illustrated in the series of drawings qiven

in Fig C-3. Interpolation is carried out on each of the four

triangles for each grid block in the segment (I14i_12,

Jl&]_J2) of the set D* specified. In each triangle where a

desired contour value # is known to lie, interpolatlons are

performed along all three sides of trlangle. Let d' be the

directed distance from a given triangle vertex to the point

on the triangle side where the contour intersects that side

(denoted by @) as illustrated in Fig C-2b for triangle 1 and

is defined in an analogous manner for the other triangles.

Let _I and _2 be respectively the value of _ at different

triangle vertex, then d' may be expressed as

d'-(side length) (_-_1)/(_2-_ I)

For example, along side 1 of triangle i, d' is given by

dl__'(l.0) (@-$m+l,n)/($m,n-_m+l, n)
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Noting'that the sides of the triangle have lengths l.O,

0.71 and 0.71 The contour intersectlons can be expressed in

the local trianqle coordinate (§,_) as

Side Coozdinates

1

2

3

§i Ul

l-d 0

d/2 d/2

(l+d)/2 (l-d)/2

where d=(_-¢i)/(¢2-¢l_nd where i=I,2,3 or 4 denotes the

triangle number.

Once the contour intersections have been located in

terms of _he local triangle coordinates (§i,_i), they must

be transformed to the grid block coordinates (_mn,_mn). This

is done in the conventional fashion using orthogonal rotation

matrices. If [§l,g_l,_ are the coordinates of an

intersection in tria:Igle l, then

(_m,n )l,p

(nm,n) l,p

IS
l,p

=AIIul, p

where II 0!;
Al=_ A 2 -

11 01

0 1

-i 0
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0 -I

1 0

Finally, the point [(_mn)ip, (qmn)l _ is transformed to

(_,q) coordinates by a simple linear transformation

producing an element [_k,_k ] of the set C(¢).

Table C-i of numerical procedure can be used to save

the computational time and to set up a smooth plotting.

Since contours on the transformed plane are of little

interest, C(# ) must be transformed to the physical plane.

This is made possible through the use of the coordinate

transformation function X(_i,qj) and Y(_i,qj ). Aqain

interpolation is required since almost all points of C(¢)

are not on the nodes of elements of D on which the discrete

function X(_ i ,Dj ) and Y(_i 'qj ) are defined. As illustrated

in Fig C-4 this implies a dobule linear Interpolation must

be performed. If [_k,_k ] denotes an point of C(¢), the first

step to locate the _ and q values. Denoting these by _i,_i+l

and nj ,n9+ 1 as shown in the Fig C-4, the values of x k and Yk

are calculated as follows:

Xk" (_ k -_ J) (XJ+I-Xj) / (n j+l-_ j) ÷X ]

where
Xj'(_k'_i ) (Xi+l,j'xi,j)/_ i÷l-_ i) ÷x. _,j
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Xj÷l=(_k-_ i) (Xi+l,j+l-Xi,j+l)/(_i+l-_i)+xi,j+ 1

for all k=l,2 ........ n. Similar expressions are used to

calculate Y

_0Y

F%g. C-4 Interpolation for x and y
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APDEND!X D

COMPUTEI_ PROGRAM

((;001) C _)*I:8OUNOA*Y FITTI[_ COCROI_ATI. 5yST(:v

¢_001)

(_002)

(00Q4)

_OOt)

COOT)

COOq)

tOIG)
(_Oll)

_012)

COL_)
_014)
0015)

C01t)
r01;)

_OLS)
COLqP

C02G)
OOZl)

9022)

C02e;

C02_)
_026)

O02?)
ooze)

co2_)
_030)

(0031!
(C03_|

(103q)

(0035)
(C034)

(0037)
(OOJA)

(c03ql
(_040)

(COqQ)

(_0451
(50q6)

¢:041)
l(04P)

110_q1
C_050J

C05t)
00_2)

_0S3)

:0$*)
:055)
(_$4)

_|SYm

:05M)

IcO_O)

C 0*I:_nU_0iMY FTTTTO C00MOIkAT£ SYSTCM
C
C

C Y_[q ?R00qaM IS _S[_ T_ TaqqsFrq i ?qY_ICA_(x+?)

= _O_ZN INTO a T_4Ft_SFGR_(D(_,n ) :O_&I_.
¢

C |YNAX: T_( u&X|,4,j_ 'IGO[S _N TH( _ 0I_(CTI_N

¢ ;: TN( CONC[VTNtT|O"! VALU[S )N Tq( n L_
ql|tJ): Tq( q VI_U( IT T_[ POINTI_eJ) |'; TH_ T_',$r_;v[_ _0+1104

C Y( [e+): _+( Y VlkU[ IT T+_ +tt_t(l,+l [_ Pq+ rm_+.Sv,+.:_+ 0o,£:,;

C I¥J: JIX(*_ -qqe_
C SPN: _UCC(SSIY[ _v(q _(L_TIO'

C _: _ne_lFl[O F SCTO_
C CK: _[Cly F_CTOq

C

C

I|NSYAT SVSCOu)CRqO._

q|_STRY $Y_COq)&CqCY$
|NPL|CZT q(&LeA 46-_s_-_)

CO_mQN/IAA/ Xlq_e4LleY140e_|)
_.,-OePOM Q(kll_PlAOJllXlAOe4t)_P_lqOe4|)

CALL SRCNS$IqII_OIeSMALeIAeTeYYP(eCOCP)

¢IL_ $RCN_SIKq_qIT�eS_IIe*Ae_eTYP(*¢O0[)
C
r *

C
C

C

,00( _

************************** CC_C(';TIIIY[0"I V&L.(._ em.,_

0:3 I! ..lm2tl|

P,, I d )lOll _1¢ f J • | o i .Ill , Pq )

t2 CO'q 1rl N_JC

')C It t<sll,_._

Lfm m lq IsC )"+O 11( • 2L • _|.e l' ,C _ )

dill Y(lk,+++)l)

(IQ +J0 ;,lid Jt|.l|

I I I lJltl I ! _1 l| *J)
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(nll|) C 0-l:O3UNOk_¥ _ITTE_ C3CAOI*_AT_ SYST¶ v

(¢061)

(¢_63)

(:064)
(C062)

t_866)
f1067)

C_06_)
c¢06q|

(_074)
(9071)

(CO?_)

¢_074)
(3a?S)

(_lTi)
(CO??|

(_OYOl

(:080)
¢_lAtl
10812)

(_li3)

(:ll_l
COliSI

(_lli)
¢_OIil

(_Oll)
(_11_1

((Oql)
(3092)
¢_1*$1

¢C014)

I(l_gl
t{lll)
(G|97)

((09P)

t_iSqJ
CGIIO)

¢OiOl)
tOiOil

ClO_)
OiOi)

{l|Jl

Clllt

:109i

4110)

CIII*
QII_I

_11])

(11_)

_llil

Cilll

((llil
IOllOt

iT
C

¢
C

??

;tel

" I [_lX,_)iif2t,J)

y ( 1 ,J) IlY( |'q4ll I e,,,))
_!6 Y ( [ "1 X,,JJ IIy (_l,,J)

90 4k5 Ji2,J"llVl

l_l =l_livl

i!rl ,.I.G( • 1_ I I._11 =,,e

• *********************** LIILICE (_*Yt'3 _' ("*=0,+1=01

OO ?0 lsIP4I,INP

lift IX I l e4*l)-ll( :,J-I l

111 il 1|* l,,J)--ll ( |-I ,,J)
+CT ,_(t,J*il'_'( t,J-t I

Yllsill*IoJl*il l-lid;

fix rtT=I i l*l,J'i )*l ( l*le.J* 1 ) *il I t*l ,J*l)- _l l* l,J* I)

¥11t TT t, L[*tiJ*% I-Ylt*lid-Ll*Yl t-liJ*Ll-v( t-tiJ*tl
i_ll (lET),*2*4Y_ Tie*:

9 is IX 1, XTT*ytII- YET
_l (XI( I *e2e( y_ [| • lt_

lvl lldiilll*llil-li#ii+lil*lldii-l+l.lilr/#+.l

,.-II *1 II ll#*ll*l (hi-l) I )/ll**,l ll*Gli I
WYIIIilIIIFiIYII-Ii+dliiIIiItJI I*l_l*illtl/:.l

l*ll*lil ! idil) *Y (llJ*l) ) 1#12.*1 IFiGii I

tlttltliltliilll.t li II_ Ol liP* i_) l_lllO'+ SOreSt i_l i

tYdi.i$*(IX IoiT_T-IICTeII II

l&_lii_Ydi**l_( I(T'.¢iJI*Xi [*Pl Ill t / I AF*,%_i

i 1+ II lIYJl**li( v(l*4 (Ji*Yll *l I I I I I / ill*+'+ )
Ill h#llllllti)-liO
Ill llJlillil./l*Ii3

I I I l#llli 1.7l*1 Ill l iJl-ll I i*.l ) I!O I

Y I I 14lit I l.ii*l It I I *#)-Yl I +..i i *+01
?_ CO'_ IIIXJ (

65 ¢ 3N 'lr| q_C
O0 ,_? JIZliJqlqi

Y Iltdti_*_O
Y Ii l*JI IO*,_O

I I I I Itti tilt ittl t II Ii _IT. _.1 #_1 _.P,q ¥ I: IIl _'1 _. {:

tlliO.O
O_ I? illIaiil%

rill till liil'I(_ieli

11 lOllS Ills 11 *G Y.O Ill li. Pl I IlPl =(l+.l
Ill _lll lIJlii I$+t/I
II I r, lll ¢(llll .I liOlbl it II I I _ll _£P I+

C3t 11 _lii e.
ill It li.lll I_ltlll

llOll'*lYllXiilltl,itl')ll i_l_ Ill lll(*ilii,Irl),ll

llrl_llflili*l,l.l,O,;mOOO:i)'l." I+ I_

30 1_9 Ji_,J_&_ 1

I'll 8]

i l I ,,,.3T. 121 'qlll"
O0 11+ lll'*l,+l'i@

I JItl-I
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0121)

:12-")
_123)
:12ql

:12_! I

3121i )
'112/I

_12,i
:12q)

¢-%31) _.

(_13;I)

(0134)
(:135!

(¢131)
(¢137) 'i6

(_1311) It6

¢ _,13qJ i30

( Cl4_,ll L+O0
I Cilil) .IO0

¢ Ol+l) lOO

(_&43) IJ00

(_1421
P qoGII &lq _lZ[:

i Is ¢.50 O* 1'( I | i4 !l*X I IJ 94 I I

iY= 0,,5!_10" (Y (I PJ )-Y( IJiJ i)
XltidiiAII

X t ! ,,,9 J) six
Y (I t4lilll

i2 _. Y iI J.J) =-,IT
l IN It
;¢ 1O "C

llllie,lleeloeoilll _,U_:iUT }A_'lk .... T_[ F_._ re:At1

8 _. IdIIT(iI,_3OiN

3,) ':0 JziiJt'llX
d II | TI[ (_ ill ",'I ) J

If Jl i T£ (_, ,,25 _ ) ( ill ( l+JI Ilsi ll'ix)
il I Till i3Ol)

ilqiTl[ibiiO_)(Tii,idiel=lsl'iip)
CO*i TI f|U r

FO_+IATII_MIII_IIII_IIII.._Yi lee I'C:O;_IIIIE ,-')
IraR Fil Y ( 41rio e5 )
F_lPllii.'_li9*" YoC_ltgi"iiE .eli

froltwill _lrlg.l)

FOe,!ATISIIe elite* !lie t .f_ll *eel/el
tILL (wit

ie0¢I[.UA_ - O_tT',& i.i._'IG( * 013._32 STSCW - 0C:07=
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¢CI_6) ¢

(:14Y) ¢

( 1148 ) C

IOt_9) C

0150) C

C151 _ ¢

_15_) C

1155) ¢

C154l ¢
C15_ )

0156 )
'115T)

( ¢159 )

(1160)
( 7161 )

( 01k2 I

(¢16]

( _165

( :166 1

( ¢167

( _,1 f08

( _Z6q'l 3
(0170)

(¢171) *

(3173)

(C17_)

( C175 |

( 11.'6 ) G
(_.17'Y) 27

(¢17e)

(hi?q)

osCG_l AN $|_(:

eeeteeeooeeeeeeeeeeeeeeeeeeoeteeeeooeeeeeeeetoe.eeeeeeoeeee*

_K: A_PLIr_ F_CTO •

r:K: _CC_V _A_TQq

V_kCTI65 C_NO(I*JI,02*A,C)
I_PLIC;T q£&k*" (4-_,00:)

CC_xO.

DO 10 d=JI,J2
A_(d)xle(J*41), 10.
CK (v) z_

30 ;0 J:dl,J2
_z[-_
IV(_;1,2,3

Sl_xoI.

_0 TO
SIGxL,

GPzCX(J)*L

CO_28(*leei_(J)*S[_)l(Y_)

_O TO S

CO#_xCOq_*COql
C04YI_U_

_[TLRN

=:00 (A_OR$ _<C3_G )rT,I-q[VlP.3)
(3180) C

125
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(:|01) C "*_: T_"-r T_:_.srn:'_fr :_':FIr!-'_'.TS

:001)

'_00")
_00*)

CQO_)

"O06J
'_007)

CO0,, _

.'OZ:)
_011 )

t012)
(C01.'!

(r.014)
( '_01",)
¢ :0%_,)

( :01 7_
¢ *_I?)

(COl(.)

(:02r-)
( :0_1 )

( 3922 )
¢C021.)

(C024)

(3026)

(C027)

((OZe)
¢0029)

(t)O30)
(C03t)

(:033)
(¢434l

(C032)
¢_536)

(0=37)
(C03el

(OOtO)
(:041)

(_042|
(CO_,!)

( _044 )
('_045)

(.':046)
( _04 ?)

( ll48 )
(C04ql

(¢05_1
(QO_I)

"3_2)

:,OS,b )

C0161

¢0571
?058!
"05*)

_OtC)

e

C

|v_v84C

jki_s4|
Iq_X1=ZvtX-!

J +_X%=lm&X*l

"(SC(t:,I3C)(_(_X,_V),_xI*T"t_)

;r4_(|l*i3:lfG¢JltJx_*41)

_(sC(lltlO=)C_el),lxt,_O)

*********************** CAL_*UL.&Tr T_r Tn_'_Segq_ c_rFF_,Clf.'lfS

9_ 411 [fs_,J_i_t

[':pzI_l,[
iF(IY._K,l?)IN%zq

I;(lY.&{,t;)I'_=:_4
_0 4%1 (_sl_l*lLP
IZI|_[Y|I_*Se(I(IIeI_|Y)'_IIX'|z|Y))

xl_(lv-lYJx_(I_etei¥)*;e_O*rZ_,lY)*q(I_-l,(v)

(r(IX,lV)x_e_*(v(I(,_Yel)-((IX,_Y-|))
f_(|Xe[T|Xr([t_|Y*||-2.0,*f_,_Y)*x(_X_:_*[|

YT(IX,_Y)S_._e(v(IX*to|Y)-Yt|I*|,[_))
Y_Z(I_*I¥)zY(|_*leIYI*_,OeY(Ix,II)*YI|4-|,Iv)
Y_(|_*t_)seoSe(Y¢|_,I¥*_)-Y(|X,'Y*|))

vC_(IX,IY)xvCI(,IY*I)-?.3eY(|_,IYJ*_(:X,[_*I)

X_(IXe|Y)zCe_**¢X(vX_I,[Tel)*_(IX*t,IY*LJ**(_q*te|Y-()

-,(''*[,:Y*|))
¢_(|_,lY)e?,_e-(Y('_*L,|Y*I_or(IX*I,/v*I)*_(!_-Z,I'*:_

! -vfl_*t,_"*t)|

"" _L3 I4*:*[qtv;
q!(rxe%)t_e_,(,(ix.t,lJo_(_VoloL))
VZI'Ve|)T_o_*¢VI|X*_*I)-Y(:_*I*I_)
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I_OOZ) C _-_1 Tmr trot _$1t'+*+C.n COr+rFlCtt,,t +

:041+I) q+l+t

:1167 )

"063)
_Ok+ )

¢i+.")

C061l

"OIk t)

)Ilk • )
I (lle t

I _.l tot
C *Otll

I _Ot.+)

ICl+. ! )

( +_07* )
(lOt_)

(tl?t)
(_.Ott)

I :0711
( 90?"1

( ':lie ! tit
ICll|)

( I|IP )
( _llI+* )

t Cl.qil
I 101_1

( 31Rl I

I COilt l
( COIl )
( It_lI* !

| :oqo)

I .+Oqlt t
I (Oq;;) C

I C+qP.l ) t
¢ OQg*)

( ¢1,11. )

I CIIJ;I I q|

¢ Olqtl

(OOOR) +J
t CO'l'+

(OiOOI 'l.*
191111

Oil.* t

11041 l +*J

01351

ClOt)

"*lOll
_IO*I

CIICI
:ILL)

:ill¿ lip

:II:1

• _OQq I_ SlZf:

2+11 rltllOq ¶
i CLIL ) c

I +|ltl l"
I "|ill C

_P.' _Jl,| ll_oljelqelt) "_11 9|--+. oil : _l! |) *I'1 I _t,+_ ) l

l'tl t2

:#1 It.J'+.1"*1[_ll _X

IF I IY .+_. It. )[.tl_ x3+
+_) ll_l l_x,'*ll,l':ll

¿+ll(t t l, |Vl 01"1 l'(* lv)*VCl It, It 10 +'+ l 11, lit)

:lit lZ ( | II |¥ l*lll. I |X, I v) * (;+. ( t*+ | + )* vv I I I, [yl

$1#_? It (eli)*17 l|X,tYl*v? ( :_,It s-v_. (IX, tV )
_)J_V_.lt _,It)*t P.ltt*Itl*vt'lt++Iv )*v:l|t,lv)
=3 'r _.ItVl*?J-mJ

_tl_ll( I ) *pJ ell_j
VII tX *tl ) I-_eS*l_.t& t P,IP

V `+( :x ,! v) x=,;._* _ZCI _,_

V"l lilt t) lr.*+l te

v _i+'+l -"X ,|? I10, _ +qdlllr

Irlt ,t *I +)_I +.JeqJ/III l

+21 ;_+lVlx;'rlt _r

0,3 3 tlx+,:+lXl

l_Jl lOS Jet Ill II _I_ , .* | e* _.I¥ | :11 _I_ 1* . + 1+I_ :OT( 111 | +11 | * ._.v I | • • | ) • -21
"_P.+ IIII_I|,_I/+<AI**_P
&It I I_[ I I 11e_1 *It( |I* | leYe(l If* | l .,r( I)I l| )

It*lZlt;eJleV(( tleII*V;IL'I,|Ietll 1_,11

l_llVZ It slell-_t (|slo| l*Yt lll,t ) *+_.l "l *t )
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l&llill-+C_|Plillt|Vl

IIl|l)_l,IPO

{¢III|e-PCP|+II|I*I+)



((241)
( ;_q2 )

((24Q)

(:245)
(C2q&)

((247)

( :24'; )

( C250 )
((251)

( C252 )
( 0253 )

( {254 )
r(25. I )

¢ 025b )
(C2'J7)

¢(25e)
( (25 c. )

(C260)
( 0261 )

(26:)

(2$ I. )
C2kt)

_257)
Q268 )

(a4,_)

C270)
¢271 ;

0272 )
C27.1 )

C27,)

0276)

(277)
(C27_)
( C27q )

(O2flO)

((281)
( C282 )

(Ca83)

(_20 l_

¢ (2lie
( O287

( _;r_8
(c2qq

( C2'_C
( O_'ll

( ¢2q2

( _2e!
( _2q4

( c2q_J

¢ C296
( C|qT

( (=qe
¢ r.;i,,;q )

( c$11o )

OF POOR QL_ALi'_,"

3-4 UNSTEAOY FLOV PRnGR&M

142100(TX)zPCPOPIfTYtlY)*PS_N(TI,IY*I,2)*PCPO_tfTX,IY)*PS|_(|X,

_¥'It2)*PCPIPI(tXoIY)*P_IN([X*I,IY*Lo2)*PCPlq|(_XtZ_)*_S|N

S(tX*|oXY'|*2)*PC_|PI(Z_tXY)*PSI_(|X'It_Yt|*2)*°CMIWI(Z_tZY)*PS_
e(I)-I,|Yo_+2)-O_PO_O([Xe|Y)*FF(IX,[¥)

OO(INl)=OOllql)*_Allql)*PSt_(l_l't_lY,2)
OO(I_P):OO(INP)-CC(I_P)*P$I_(I_=*I_I_,:)

C_LL TqI_A_(INI,INP,_A,P_CCeO(,T)

0¢ 1431 _X:|N|_P
P$I_(IX,|Y_3)=T(IX)

1.31 CC_?INt_(

IF(IY,LE,II)GO TO 1415

GO TO 14o6

lqo_ CONTIUU£

C **************** ¢WECK FO_ _ON_rRG(kC(.
¢

3C I_25 1Y:2,15

O0 lq25 |X:LYeLZ
O(c$1:P$[N(IX_IYe2)-PSIN(IXeIY_1)
_I_AOSfO(PS|).GTeOABSf_NP_|)I_v_SI:O(P$!

CONT|NUF

O0 1505 IYz2*I5
OC 1505 IXsLY_LZ

PSl_(IXelVel)zP_lN(lXe[Ve2)
[F(CAOq(SHPSI).LT.O.O0001)_O TO 275

l_(_leGE.loS)GO TO ?75

NI:Nt*I

N3:k3*l
_C TO 140_

lq25

C

C
C

:01

*******,******* TN£ NUR(_ZCAL _£$ULTS OF $Tq(A_ FU_CTI:'t AkO

VORTICITY VAL_(S AT (lC_ TIM( STEP.

VRIT(IG_IOO2ISmZ(T,_3

INIT[(_,IOO2iS_PSIeNI

O0 5_1 IVz2e[lq

[Nes|Xml

I_([Y,_(,LX)INI=4.T

0¢ _01 |xzlNl.lq_
ZCT_(IX,IYI3|aZ(Ta_iIZ,lY,;I

IF(IT.(_.20)W_s*
IV( IT,[_,30)NH=$

|f(|T.r_._OlN#12

IP( lY *(_*$0)qP=!

|FI_q*LY,NmIIO TO 1200

llV:ll_*_

IFrlI#,G(.ITYIII_slVY

LLI-'*t.Ll*l

I_(LL1,6(,LL$)LLlsLL_

I_(LL2,G(*LLJ)EL2ULL3

II(IE.G(.A(_AII_(IIE_ll
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C-4 _ST_ADY (LOW PqCGAA_

C_301)

((302)
((_02)

((304) ?0_

(C_07)

(C30#1 80_
(030q)

(t21_) 111

¢C311) 11_

(0312) 600

(C31_) 1002
((_14) 1001

(C315) X2Q"
(0316)

((21T)
P_QGmAM StZ[:

O0 TO0 [YzI,[YXlX
[F(IY._[.3)50 T_ ?00

_RrT[(6,111)IP_t_(|Xe|Y+2),IXzl,IXmAX)

|FIIY.G(.3IgO T_ 8+_

VRTTE(6+I12PIY

V_[T((_,IOOI)R(
FCIPI?I?F11.+)

FCqVATIIX**_Z=**[3)
FOqVAT(/_,SX,eVA. OF TI_E:+,Fll.61

WC_PAT(I_X,*[q_:*+_I_.R,SX,'N=+_|_)
FQ_PATC//,ISX,e_(:e*FIO.5)

CONTlqur
CALL [XlT

F_OC[_U_( - 0043_0 Lt%_AG( - 0C0526 STACK - 000102
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{{001) C

_12L) 50t PSIY¢ |v. IY. l) s'J _I't¢ Ix _IV.2;

0122) IF(",I._.30_)GO TO :,_0=

01.2. _ ) |Ff_,t'_;($,w,U_I).t.T.,}.OO"_31)_G vC _00_
:12q ) "; L s*, L "* |

_.12b ) :

C12?1 C ..0..-*-
_12_) C

_|2 e ) C:
:1._31 b_.O," dqlTr-( :,

_131) 3:70(3

P.13 ? ) 70L ;.= : T[ (L

qlA3; 11_ w J_"JT(
0134) 111 F,')"*'A r (

(Cl3t) C_tt C_

( :137 ) ".":'_

OCOO tRitOnS C<.._'I_.)r_'"-:';'_.3- "

[TzI,|Y"_X

"':s*,I?,'._*'£_z',_ll,8)
7FIt.6)

l_,'I:s',I3_
tT
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i

:lJe)
*13q)
(l,q)

¢1_1)

=14_i :

:1,4) C
:142) C

(ct*i) C
(_II?I C

(¢1,*)
( £I*'I C

( :1 .qi) ".

(¢152) C
(alS")

(315,)
(:,I_'.)

iCl_t)

C_lST)
(_1,5(I)

IClbOI

(_I11)
( _1)2 )

¢¢t12)
I all4 )

(Ctkl)

(Cll))

C ._tiJl

O**Cll C_oOl_ C

C

_= ooetoeeeeeoe*eoe,eeeeeooe.eeeeee ************************ **.

¢

•"U.,4."UI'T'._ ¢')I "_#,I,.V:',G '_ $y_rrv ,..fr _._,,,_.,_ ._:._jLT:,,_I._

[_itiarlr,',l-.',|*': t *'(_tl_.'l. _.*r._lr'ClE..:l' 'IT_:,,

"iJ_'Jl&.,-1.'illL) :l_.O';IL* a_: ";UP_":''_ik$O'Jit= "_.lrc[cii''T¶

aq r_ xYl_l_._ i') I'H;. ll'l;;y_, li, .;) ,' ,1_ _7, Ti_: .*.'.'_IT(.*

l*e LI_.I ? 4l_ IL,* ¢ 1--,3*" I

lii_l _l I i. I ) I_ ( Ill I #_i I I I r i
lllllll*l

_0 ! llllilei.

_ll III ) u_l I I°l( I i*CI !- i )/.__" li I I-1 )
I l_'_ _i II lli_l 1 I -ill ) oli)'vlt I -I ) I IIC1.11 ! )
Vii. ll_l "tl lt.I

• I! lute- II

? v I I )liGl.li( l)*r t 11-i( I *l)#lr. Yi 4 i)

q(Y);l_l
_. -'0

)_0¢_',) i" ° _',¢2:& i.[ *i_,j - ?._i_) _?'_,e % O_ _Til

"I l I r.lilie "i'' r.V l ',3:
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(_lkq)
¢017U)
0¢171)

(t17_)

(¢17_)

(727_)
(_1751

(_1?6)

(:I?;)

(_l?q)

(:18J)
(_18t)
¢_182)

(01M')
((lS4)

(3186)

(01891
(21s0)

(C191)
((:9;)

(%9_)
(_194)

(riOt)

(C19t|
¢3197)

(719_)

(C20:)
¢_2al)

(:202)
(a207)

((20,)

(:lOt)
(O|OT)

¢220_)
(020 • )

(¢210)

(C211)

(_213)

0221,)

(321m)

_217)
(21 ° )
_21;!

0220)
C221)

_223)
_2Z*)

_111)

_ll?)

_I181

eeeD *oee eot eeet* *ee* *eol eeee *ee eet **Qoo* *et e*eo.e* o* *00

:U'_TI_ r pll¢Ol C(;oill;);)
c

c 3Ug_*UTI Ir Irg# 5_'LV'._; ell G-I_'.T C._r.FIr;CI( IT';.

C

r.C_''O_#_$l"/o_"IPll_O_l),_'VlC[l,?,,l)._."lVl(_,l'),

7o'?o I**t(_O,a_)*ae_O:_(_,41)

(:*r. rO. _ ,"0:1 _ L

tp.l -"• _._i

3_T;'*'<

IF( _,,L T ,3, )CP._ z-£=r

IrI_'_eLT,_e)[P _ -c#r
IF( [ ^ _"'_ ( AM9 ,LYe "Dr.) iHIt_ I=t

l _ ( Cld5 (_IK),l.Y,_J()gKzf.*-_
&H*; I&H • IN

IFI'*.oI.YoI,_.)G_ Y_ '_5

_C 20 _=1,'*"

,q:(-I .1,**

4 l'l FIo"JA T ( v, )
(L I l.lll_l,eI ,Q 05

[t.ll*-/mCl.&_ "(ha"

_. C $ )*o I, eJ_O * ('._1_.XP ([:t'.*Pt() *0[ ( II ( *'I_'UP( ) )

r_2e _*l_'all *(L t_l ( ( 3_ _*(1.'. _ )*-2, _)/*_ e),o, r ?o
20 e.O'_ ?I ;;U r

(X_ 11.4xrl rqu' (ll_)
t_YP I(z_ r qP (._'()

¢0_; F'*(zJ, _;o(_(_eg *0 * _lf XP "*(
C*t _ Iris( _)_I)At4 *r. YD&H) | 03 ) 4( [_l I: &H*" d _ A)'- _, * _ )

C_T _:Klt f _._O ,KeC'_okl(.LeC ) /'(( (pl),_ **-Xa ,_.I, ]l

3.' [_x:,

0" -_0 *x|,'**e

C C'_ p I, q _"_.• ( Pr. I*_ (_**'w) *" [X Ill ( -r. ML • ) )

" II¢ llal_Ir ll)I I _|
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_-_ CCqT_UR PLOT

((031

((00:

(tO04
(_00*

(tOOt

t(O0?)
(_OOP)

(tOOe!

((OlCI
(_011i
(COt2)

(tO12)

(_01q)
I(Ol_)

(_916)
(00|1)

¢(01i)
('OI e )

ICOIO)

(tOil)
(ce83)

i_oJ4)

(rOl_J
((llgl

13i|Pi

rob • )
(i3(I

_051)

*0321

(034)
P035i

(036)
CO_?)

¢03I)

C060|

(Ciel)
te147i

tOO*4)
¢(_Q?)

(C|41!
|CO4?J

(CO4P)
(COQql

(el_oi
(_OSt)

1(1++)
c:15*i

1:05+)

1(|511

ICI$11

(CtSI)

¢¢16|)

t/l(_lUkC* #P_ ('********lO).*[t SmtaGi+TIm[al
#*PISStO_C ****

#*qOuT( #R|_T LOIAL
tt+t 'xt# tO_tlSvY+_tOlO_.$O._O_

##_04Te_Tq|N CO *

+O_mON +SlCI30)*POOtl|tllllittlilleY+Cill)

CQPPON_iAA/nSI(4Oe4LIeXI40_IIIVI40+4iD.SCILOO_IIY_IIO_O)e'TQ

CC'PO_.'m8OtX_RV1400111
CaLL v(_gYC

q(IClSilS|OliPStCillellli141
O+ 3e att**L

_(atlqotoOOilllll+lolili40l

q(aC¢_elOOOllYlliJ),I81tiO)

30 COqYINu!

O0 1_6 LL_*I,I
OC 13S pm$i_

q([C¢_ollOOIXP_iSeVPH¥_
IffIIIJ_YSeTP_Y$IeLtoOeOOOOOI)OP TO i4_

+O ?00 Ivul_4l

TO_ lf_tlSillOOllPSlllxelYJ_ll_teeC)

CaLL 8+NPL(OI

CILL 5rYO(YIOeOi
C_LL mgOqO_

CaLL P_VSON(IP_VSIYP_VS|
CaLL YlYkE( e °eloei$OelCOei¥$eilO0*_.Oil. O)

call oqiPl-leOi+oOe|OeOi-_eOil.ge3.0)
CALL "OLY3

OC *I T_I**O
Jei

IXClllelll,+)

41 YTCIIItTII,J)

CaLL CUIVIilICtYTC,_O,O)
90 _OI lYul,4l

O0 _00 tlsl,4O
300 IPmtllleiVi80oO

iYl_i
O0 5110 _el,l*

OC *103 Ill(ill1
qPll

lye3
iO'l

tILL tmlCIilltlllPqltlllilYtlS*_PI
lfitlO,_l+l)lO iO lit#

_iOi CqkIINUC

SO _0 5|00
5+13 ¢ILL IITIIIIIIiIPilCIII+IIoIOokII

Ill0 ¢¢4llqu(
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C oi ¢¢Nlnue eLOY

¢|4:1 :a" 0¢ tOO _*totO

(Ot?J C_ tO0 Tlsl_o_n

t04_1 IO*t

ClkPl ClLL CN_CIIII,IYeP$1CINII|TelD,kP)
file) |lqkTO._T.|llO TO P|O

CO_Cl JQ" ¢¢kI|NU t
(Ort_ G _ vO I10

OOT:I _t_ CtLk PtTNIiI¢iV,PSTCIN).IY,lO,_'*I
"09_) 10_ CO_ TINuF

¢0941 Ivoll*t

tOl') lPIIV.G[,I_)O0 Y3 _ll
rOYal _ TO _|
_O?Y) _11 CILL P_lef

[0911 ¢iLL r_+_llOl

(+lrel I)¢ COSTIqUL
l+OiOi PILL l_mPL¢O|

I¢0|11 It _ COaTI,U"

ctOl:t ¢ILL PO_tP_

l(ll+l |+l[ f_IoII¢PPIO,+I

qllll) L|O+ fO4mlVl_ft|.ll

l+Ol+l t+O0 fOIPIIIIILLI

(tll+l ITCP
l+Olll tmn

ITtCq - +0P341
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COIl'l !

C0_5)
*Oql )

:Oq2)
rOq?)

_Oq* )
_Oqe+ )

(0'96)

(Oq_)

_.Jq8 )
_Oelq)

ClOC)
"101

rtO?)
010.q )

ClO*)
ClO =. )

_1041

(_tO?)

CCIOF)

((10')
ICII_I

_1311

'1121

C11. _ )
C114b)

C115)
¢116)

¢11_)

¢i1T)
01|q)

¢120)
_IZI )

rlJ;;
CIZ. q )

C12_J

¢1,q2 )
(t_tt)

(:1_ ;)

¢1|1)
fl_*)

Ct3O)

ol31)

(13_1
(l.t?)

015Q)

rl361
(131J
GI3P)

Ql$q)

(IQ|)
f1411

014Z1
:IQ'I

_IQq!

(1'*-)

¢1t61
_1,1 ; I

(148+ !

*eoe eeoc *eo *toe* **o**eo* ooo* eta * *oe* **0* .se, o.e* o* ** **e .OO* *ee
C

.SUPII 1"I_T X*4| PITP

C

_" Yt4T_ $u°qouTZN[ IS U$_'_ TO F_f" ¢3U1' YN(_ g'&T _ OF TN( CUOV([,
C

e9 • • eeee ee_eeeee eeo 6_e_e e4, 4_e,)e4_ eee 6e eeee eee * esee ee • • .$ • eee • *ee
¢

C

S_J_ _qouY IN[ P&T_(Ix*IV,_[C, It, toe,in )

CCPlt_OII/i A4 _1_$ I ( IJOo_l t ) o X (415, _l| ) ,,'9(40,4 t I e]lC( |O0_)s yC (10C0), %YO

C_V e@NS_OOSI(flKV (40,4L)
_IN_V( IV *IY)z3,0
Iltzll

Ivl=l_

kqs I
_lle t'ql_* 1

CALL C_*rCl ( i x, [ Y_P_ 1(0 I Y_ [O,NI_ )
[IrI_TOoGT,I)GO tO *-5

|IrILNe_Yo2IGO TO 8_0
_O TO *20

IT=IT*t
lOet

_ALL CHECK ( 11[ t I V_P5 |¢ e Z Tt I 0 _lIP )

L&#!

IFIkTO.LY.IIIIO YO 160
LNeJ

APt kP*|

*-*_ I¢l I_.[C.IIIYeI_*I

II r ( _Y.Cq._ ) _lllt I !01
|rl _T*(O*$) |YeIYel

IP(lYo(_.4) _tllt t*l

ll_qlY*Eq*_)lO YO _I02

|fP¢[T.['I.$)O0 Y" q'_
I_( lYo_.41)O0 1'0 SOl

*,01 lYu!
GO 1'0 *_0

qO? IT:t4
GO YO qO0

ql.' IVsI

_0 vO 400

qO* 1Y82
°O0 |lrllY,l[o35)eO t'0 _,0

|IIIItP.|Y._OIO0 TO IJ_(J

Ill( I|*L[.SIGO TO 66

|lrl|leG£.$?tlO YO _,6
GO 1'0 AA

6_ |lll lTol|.ll)lO tO 050
It ltOl+l II ely ITS,0

llrlll.[J.lltl'SO I'0 Jtl
+0 I0 IP

R* |el I¥.[I:,|TtIIO TO @*Ji
l; II+5 1'0 qlo

CALL CqtCl ¢ tl, ! vtPq |¢ q I T, I'_ eqP I
[FiI++TO,LToIIGO TO #*0
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(14_! qP*KPo|

_lS() ITt IT-I
C1511 19:fi

_152) CILL CH{CF( IX, IT+PS ZC+ [ Yl |D +NP)
+15-') |f(%TOeLT,t)GO TO :)20

[ 15" ) _lPx _P* I
C1551 ;0 TO _30

?156) _'J@ _l*kP-I

_151) CaLL CU.V( (IC, v_,Nl,0)
(1St) txsfXl
(15") IY=IYl

:160) 851 q[TI.R_
C161) r. kc

P;¢6111_ 5IZ(: PaOCECUII( * OO04_Q L_'_AG_. - _0005_
)COl rmtl_Oe5 (_4T_ >IrTN-III[VlA.31

STJC_ * O0(Ok4
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((16;)

r16*)

_165)

(167)

nZ6e)

(CI71)

(01Y2)

(_173)

((I?Q

(C176
tO1??

(C17_
((l?q

(_18_

|0181

I(1_;

(_18_

(C104

(ClOt
((181

(0180

¢c18q_

(_140)
((1ql)

(Clq2)
(Clq_)

I(lqQ)

((lq_)
(_lq&)
(_lq?)

(lq_)
(lqql
_200)

_lOl)

C202)

¢20_t
_Z05)

C_07)

C20_)

t210;

_12)

_313)

_21*)

C2Lk!

_21T)

((|le|
(;|_0)

C

Yk_$ 5ug_OuT]Nr [$ tlS( _ TO CH((P d_ET_Cq r_( _ev( kI_£ _(ULD

TH#CUGH TWO F[q£O _00_ O_ _OT.

suqqoUTIN(CN_CK(IX,IY,PS|_,IT,tO,_)
CC_POkl_a&l_S|f*Oeqi),_(40t41),?l_,41)sXCilOOO)eYC(lOCO),_TO

qYO=O
|Fi_Te_Toq)ITz|T-4

lC(lY.kY.lYlYzI_*q

IFelYo£_.l)GO TO 11
[r(|Y.C3._)GO TO L_

I_( IT,C_,_)GO T_ 13

I_IIT._,_)GO TO 14

$2sJ_I(|Xe|Y)

GC tO tS

12 5|_S|f||_|Y)

GO YO t5

5_ssSlflX*l,lY*l)

GO tO I_
1* SL=eAI(tX*t+I+*tl

S2ssSlltX*lelY)

ZF([D.C_.2)GO _C 22
I_(IO.(_.$)GO YO 23

2101sPSl_-Sl

02_S[:-52

2Z OlxPSlC-St
02_¢5|C-53

_C _0 2_
_ Olz_S/C-SJ

02,P51C-51

lPt(XoGT,O,O)lO TO 113
OuC 11(01-_). _)

Ilr(lY*T_*lllO YO 31
[fr(IT.CQ.2)QO Y_ 3?

|F(IT*r.:eS)GO YC 3_

31 ;_r(rOeC')oiJGO TO 311

[ff(IOe('_.2)_O Y3 31_
Ifr( |00_0.5)_0 YC 31_

.5; llrCtO,C';olJGC t¢ 321
ll_(|O.('l.tl_O 1"_ 32,_

llr( lo.r_..3;Go Y_ 323
3_ Illl|O.[':et)h 0 "r_ 3_'_

I_r(lO,(.1,;_;_O _'" 332
ilrClO,r'l.A)_O eO 333

3* tfr(IO._l.I;(_O TO A*l
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(_222) IP(tO.i_ea)G0 TO 3*2
(¢22.') IF(IOe(.?,3)G0 T¢ 3.),_

((;24) 1'11 ZKz 1,-0

( G22_. ) (K=0.
('_226) SG TO a5

( (;i21 _ ;I; Z_*C/2.
¢ (22t) CN:CIa,

1t:32_) SQ TO .)5
(_.230) Jlq ZKz (1.*_)/2.

((331) F.*(s (10-C)/2.
((232) GC TO a2

(_.233) ._21 Z_*O.
( ._234 ) CKsC

(C23a.) q;C 10 4 _.
((23t) ._;r2 ZIt T CI20

(C231) (Ks t.-OJa*

(C231_) SC TO 4_
( ('23 t. ) !27 ZNs 11,-C)/:'.
((2.) t: ) (Ks _1.'0)/2.

(e2.)1) GO TO 45

( ,';_Q2 ) 3,3t Z_,C
((2.). _) (Xsi,

((:).)all GC ?0 4_
(_245) 332 ZK s 1, -,_/2.

(C246) (OK: 1.-9 12.

(_;_Q1) GC ?0 ')5
((;_.)t) 232 Z_l (10-0)12.

(C24q) (_s (1,-0)12,
(0250) GC 'tO q,

(_2S1) .'41 Z_,s 1.
((_5;) (Ks 1.'0

(0253) GO TO 45

(C2_4) _42 Zq* |.-O12.
( (;_5 o. ) (Kt Cl?.

((251) Gf' TO .)2
(P_57) 343 ZKx (1.*0)12.

( _.25_ ) (_z (1.'0)/2.
((|5_.) 4_J CaLL Xy(ZKe(Kel_tIY_NP)

((26C) qTC :2

(C_&l) 1_3 Pt_YUft N
( _62 ) (l'O
pscGllapl Sla(: aaOC(CUPI( - 000640

0(01 r.RAO_5 ('<CI_(¢K)I_TN*ItCViS,3)

LINXIS • - OOOOk.) ST_CX * O0006k
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f2t. 1 )
(21_e t
_'26 ! )
[26_ )
_21b7) C
_21k8) ':.
f:_6 ¢ ) C
(2T() C
C271) c
C2?2) :
f27_)

¢27_)
027_)
f271)
_2Te)
0279)

¢(281)

;_tOGIt tm 51zr:
CCOl (_lC*'_ C,¢I_

C

¢
SU__m'LTI_ f xv

T_I$ SUnqOuTIN_ IS US(U TO LOCJT[ TH( CU_V£ L|,_[ ON
T_ PHY_|¢JL PLAN(.

SU*_OUTIN(XY(ZK,(K_|IelY,q;)
CC_PONIAiAIP$II40,41),X(_O,41),V(40,_I),XC(IOOO)+VC;IO_O)ekTO
XJIZKe¢_¢Ix*|t_v)e_(I_e|Y_)*X(TXt_Y)
XJ_IsZ_eIX(IX*I,I_*|)*XI|I, IY*I))*XIIX, I_*t)
X¢(kP)xfK*(XJPI°XJ)*XJ
YJIZK*( Y( IX* 11 tY) *V( IX * lY | ) *Y I l_* IV )
YJP I_/_ *lYl IX*I + |Y*l)-Yll X, lY*t)) *Y I IX, iV* l )
YC / kP)zrKe(¥JP _-Y_ 1 _YJ
NCTLRN
(qO

P_OCCCU_( - o_ollo LI_XIGr - _;O05k STICK - 00?044
)eTN*S(VIS.3]




